4,463 research outputs found

    Vision-based reinforcement learning using approximate policy iteration

    Get PDF
    A major issue for reinforcement learning (RL) applied to robotics is the time required to learn a new skill. While RL has been used to learn mobile robot control in many simulated domains, applications involving learning on real robots are still relatively rare. In this paper, the Least-Squares Policy Iteration (LSPI) reinforcement learning algorithm and a new model-based algorithm Least-Squares Policy Iteration with Prioritized Sweeping (LSPI+), are implemented on a mobile robot to acquire new skills quickly and efficiently. LSPI+ combines the benefits of LSPI and prioritized sweeping, which uses all previous experience to focus the computational effort on the most “interesting” or dynamic parts of the state space. The proposed algorithms are tested on a household vacuum cleaner robot for learning a docking task using vision as the only sensor modality. In experiments these algorithms are compared to other model-based and model-free RL algorithms. The results show that the number of trials required to learn the docking task is significantly reduced using LSPI compared to the other RL algorithms investigated, and that LSPI+ further improves on the performance of LSPI

    From Rolling Over to Walking: Enabling Humanoid Robots to Develop Complex Motor Skills

    Full text link
    This paper presents an innovative method for humanoid robots to acquire a comprehensive set of motor skills through reinforcement learning. The approach utilizes an achievement-triggered multi-path reward function rooted in developmental robotics principles, facilitating the robot to learn gross motor skills typically mastered by human infants within a single training phase. The proposed method outperforms standard reinforcement learning techniques in success rates and learning speed within a simulation environment. By leveraging the principles of self-discovery and exploration integral to infant learning, this method holds the potential to significantly advance humanoid robot motor skill acquisition.Comment: 8 pages, 9 figures. Submitted to IEEE Robotics and Automation Letters. Video available at https://youtu.be/d0RqrW1Ezj

    Hi-Val: Iterative Learning of Hierarchical Value Functions for Policy Generation

    Get PDF
    Task decomposition is effective in manifold applications where the global complexity of a problem makes planning and decision-making too demanding. This is true, for example, in high-dimensional robotics domains, where (1) unpredictabilities and modeling limitations typically prevent the manual specification of robust behaviors, and (2) learning an action policy is challenging due to the curse of dimensionality. In this work, we borrow the concept of Hierarchical Task Networks (HTNs) to decompose the learning procedure, and we exploit Upper Confidence Tree (UCT) search to introduce HOP, a novel iterative algorithm for hierarchical optimistic planning with learned value functions. To obtain better generalization and generate policies, HOP simultaneously learns and uses action values. These are used to formalize constraints within the search space and to reduce the dimensionality of the problem. We evaluate our algorithm both on a fetching task using a simulated 7-DOF KUKA light weight arm and, on a pick and delivery task with a Pioneer robot

    Intrinsic Motivation Systems for Autonomous Mental Development

    Get PDF
    Exploratory activities seem to be intrinsically rewarding for children and crucial for their cognitive development. Can a machine be endowed with such an intrinsic motivation system? This is the question we study in this paper, presenting a number of computational systems that try to capture this drive towards novel or curious situations. After discussing related research coming from developmental psychology, neuroscience, developmental robotics, and active learning, this paper presents the mechanism of Intelligent Adaptive Curiosity, an intrinsic motivation system which pushes a robot towards situations in which it maximizes its learning progress. This drive makes the robot focus on situations which are neither too predictable nor too unpredictable, thus permitting autonomous mental development.The complexity of the robot’s activities autonomously increases and complex developmental sequences self-organize without being constructed in a supervised manner. Two experiments are presented illustrating the stage-like organization emerging with this mechanism. In one of them, a physical robot is placed on a baby play mat with objects that it can learn to manipulate. Experimental results show that the robot first spends time in situations which are easy to learn, then shifts its attention progressively to situations of increasing difficulty, avoiding situations in which nothing can be learned. Finally, these various results are discussed in relation to more complex forms of behavioral organization and data coming from developmental psychology. Key words: Active learning, autonomy, behavior, complexity, curiosity, development, developmental trajectory, epigenetic robotics, intrinsic motivation, learning, reinforcement learning, values

    Task Feasibility Maximization using Model-Free Policy Search and Model-Based Whole-Body Control

    Get PDF
    Producing feasible motions for highly redundant robots, such as humanoids, is a complicated and high-dimensional problem.Model-based whole-body control of such robots, can generate complex dynamic behaviors through the simultaneous execution of multiple tasks.Unfortunately, tasks are generally planned without close consideration for the underlying controller being used, or the other tasks being executed, and are often infeasible when executed on the robot. Consequently, there is no guarantee that the motion will be accomplished.In this work, we develop an optimization loop which automatically improves task feasibility using model-free policy search in conjunction with model-based whole-body control.This combination allows problems to be solved, which would be otherwise intractable using simply one or the other.Through experiments on both the simulated and real iCub humanoid robot, we show that by optimizing task feasibility, initially infeasible complex dynamic motions can be realized --- specifically, a sit-to-stand transition
    • 

    corecore