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1. Introduction    

Reinforcement learning (Sutton & Barto, 1998; Watkins & Dayan, 1998; Grefenstette, 1988; 
Miyazaki et al., 1999; Miyazaki et al., 1999) among machine learning techniques is an 
indispensable approach to realize the intelligent agent such as autonomous mobile robots. 
The importance of the technique is discussed in several literatures. However there exist a lot 
of problems compared with the other learning techniques such as Neural Networks in order 
to apply reinforcement learning to actual applications. One of the main problems of 
reinforcement learning application of actual sized problem is “curse of dimensionality” 
problem in partition of multi-inputs sensory states. High dimension of input leads to huge 
number of rules in the reinforcement learning application. It should be avoided maintaining 
computational efficiency for actual applications. Multi-agent problem such as the pursuit 
problem (Benda et al., 1985; Ito & Kanabuchi, 2001) is typical difficult problem for 
reinforcement learning computation in terms of huge dimensionality. As the other related 
problem, learning of complex task is not easy essentially because the reinforcement learning 
is based only upon rewards derived from the environment. 
In order to deal with these problems, several effective approaches are studied. For relaxation 
of task complexity, several types of hierarchical reinforcement learning have been proposed 
to apply actual applications (Takahashi & Asada, 1999; Morimoto & Doya, 2000). To avoid 
the curse of dimensionality, there exists modular hierarchical learning (Ono & Fukumoto, 
1996; Fujita & Matsuno, 2005) that construct the learning model as the combination of 
subspaces. Adaptive segmentation (Murano & Kitamura, 1997; Hamagami et al.,2003) for 
constructing the learning model validly corresponding to the environment is also studied. 
However more effective technique of different approach is also necessary in order to apply 
reinforcement learning to actual sized problems. 
In this chapter, I focus on the well-known pursuit problem and propose a hierarchical 
modular reinforcement learning that Profit Sharing learning algorithm is combined with Q 
Learning reinforcement learning algorithm hierarchically in multi-agent environment. As 
the model structure for such huge problem, I propose a modular fuzzy model extending 
SIRMs architecture (Seki et al., 2006; Yubazaki et al., 1997). Through numerical experiments, 
I show the effectiveness of the proposed algorithm compared with the conventional 
algorithms. 
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The chapter is organized as follows. In section 2, an overview of pursuit problem as multi-
agent environment is presented. In section 3, I propose construction of agent model and 
essential learning algorithms of a hierarchical reinforcement learning using a modular 
model architecture. In section 4, I propose a modular fuzzy model for agent model 
construction. The results of numerical experiments are shown in section 5. Finally, 
conclusions are drawn in section 6. 

2. Pursuit problem as multi-agent environment 

The pursuit problem is well known and has been studied as typical benchmark problem in 
Distributed Artificial Intelligence research field (Benda et al., 1985). It is multi-agent based 
problem that hunter agents act collaboratively to capture prey agent. Figure 1 shows the 4-
agent pursuit problem in 77 grids field. In the problem, all agent behave in turn to move 
upward, downward, rightward, leftward in one gird, or to stay. Collision of the agents is 
prohibited because one grid allows only one agent to stay. The objective of the simulation is 
to surround the prey agent by the hunter agents as shown in Fig.2.  
 

Wall

: Prey Agent

: Hunter Agent

Wall

: Prey Agent

: Hunter Agent

: Prey Agent

: Hunter Agent

 
Fig. 1. 4-Pursuit Problem(7x7 grids) 
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Fig. 2. Examples of Capturing Condition in Pursuit Problem 

The hunter agents can utilize walls for surrounding as well as surrounding by whole hunter 
agents. When the surrounding is successfully performed, related hunter agents receive 

reward from the environment to carry out reinforcement learning. As for behavior of the 
prey agent, it behaves to run away from the nearest hunter agent for playing a fugitive role. 
For actual computer simulations or mobile robot applications, it is indispensable to avoid 
huge memory consumption for the state space, i.e. “curse of dimensionality”, and to 
improve slow learning speed caused by its sparsity(e.g. acquired Q-value through 
reinforcement learning). In this study, I focus on the 4-agent pursuit problem to improve 
precision and efficiency of reinforcement learning in multi-agent environment and to 
demonstrate settlement of “curse of dimensionality”. 
For simulation study, I adopt “soft-max” strategy for selecting the action of the hunter 
agents. The conditional probability based on Boltzmman distribution for action selection is 
as follows: 
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where Tt is temperature at t-th iteration, s is state vector, a is the action of the agent, β is the 
parameter for temperature cooling(0<β<1), w denotes evaluation value for state-and-action 
pair, and N denotes the set of all alternative action at the state s. Owing to this mechanism, 
the hunter agent act like random walk(exploring) with high temperature value in the early 
simulation trials and act definitely based on acquired evaluation values in the later 
simulation trials according to the lowered temperature value. 

3. A hierarchical reinforcement learning using modular model architecture 

3.1 Basic concepts 
There exist two problems to solve the pursuit problem efficiently. One is huge memory 
consumption for internal knowledge expression of the agents expressed as evaluation 
weights corresponding to the pair of state-and-action caused by the grid size of the 
environment and the number of hunter agents. In order to restrain the increase of required 
memory for the agents, modular structure is applied for expression of the agent knowledge 
base. The other is complex objective, i.e. surrounding the prey collaboratively. In general, it is 
effective for dealing with such complex task to decompose into sub-tasks. Then I decompose 
the task into hierarchical sub-tasks to fulfill reinforcement learning effectively. I propose a 
hierarchical modular reinforcement learning to solve the above described two problems in 
the multi-agent pursuit simulation.  

3.2 Hierarchical task decomposition for agent learning 
It is difficult to decide how many kinds of subtask should be decomposed into. In this study, 
I empirically decompose the surrounding task(capturing) into “decision of move position 
target” for surrounding according to current monitored state and “selection of appropriate 
action” to move to the target position of each agent. The latter task is native, isolated from 
the other hunter agents, and is not needed to be collaborative such as position control of the 
single agent. In other words, the task is decomposed into “surrounding” task synchronized 
with the other hunter agents and “exploring the environment” task. Moreover, the upper 
task corresponds only to collaborative surrounding strategy. Figure 3 shows the internal 
hierarchical structure of the hunter agent. The knowledge base of the agent is composed of 
the “Rules in Upper Layer” and the “Rules in Lower Layer” as shown in the figure. It is 
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where Tt is temperature at t-th iteration, s is state vector, a is the action of the agent, β is the 
parameter for temperature cooling(0<β<1), w denotes evaluation value for state-and-action 
pair, and N denotes the set of all alternative action at the state s. Owing to this mechanism, 
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consumption for internal knowledge expression of the agents expressed as evaluation 
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environment and the number of hunter agents. In order to restrain the increase of required 
memory for the agents, modular structure is applied for expression of the agent knowledge 
base. The other is complex objective, i.e. surrounding the prey collaboratively. In general, it is 
effective for dealing with such complex task to decompose into sub-tasks. Then I decompose 
the task into hierarchical sub-tasks to fulfill reinforcement learning effectively. I propose a 
hierarchical modular reinforcement learning to solve the above described two problems in 
the multi-agent pursuit simulation.  

3.2 Hierarchical task decomposition for agent learning 
It is difficult to decide how many kinds of subtask should be decomposed into. In this study, 
I empirically decompose the surrounding task(capturing) into “decision of move position 
target” for surrounding according to current monitored state and “selection of appropriate 
action” to move to the target position of each agent. The latter task is native, isolated from 
the other hunter agents, and is not needed to be collaborative such as position control of the 
single agent. In other words, the task is decomposed into “surrounding” task synchronized 
with the other hunter agents and “exploring the environment” task. Moreover, the upper 
task corresponds only to collaborative surrounding strategy. Figure 3 shows the internal 
hierarchical structure of the hunter agent. The knowledge base of the agent is composed of 
the “Rules in Upper Layer” and the “Rules in Lower Layer” as shown in the figure. It is 
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important to keep learning capability as well as task decomposition. According to the two-
layered decomposition, rules in the lower layer can be adapted corresponding to the agent 
behavior in every step as Markov Decision Process, as shown in Fig.4. 
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Fig. 3. Internal Hierarchical Structure of Hunter Agent 
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Fig. 4. Conceptual Diagram of Hierarchical Task Decomposition 

3.3 A modular profit sharing learning for upper layer 
In the upper layer, the target position of the agent is decided based on observed state such 
as the current position of the prey agent and the other hunter agents. The rules in the upper 
layer express goodness of the target position corresponding to the current state excluding 
actual actions. In order to construct the rules based on the current state combination, huge 
corresponding memory is needed. To avoid such requirement, the authors applied modular 
structure for the rule expression (Takahashi & Watanabe, 2006) in the upper layer as shown 
in Fig.5. In this section, the dimension of modular model is assumed to be three for 

explanation simplicity. Higher dimension can also be considered as the same manner. 
Original state space of each agent is expressed as the modular model by covering with three 
subspaces of oneself-and-another pair as shown in Fig.6. 
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Fig. 5. Modular Structure of Agent State Maps 

 
Fig. 6. An Example of Modular Structured Maps 

The weights of rules in the upper layer are updated by Profit Sharing learning 
algorithm(Miyazaki et al., 1999), when capturing succeeds, as the following formulations: 
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The weights of rules in the upper layer are updated by Profit Sharing learning 
algorithm(Miyazaki et al., 1999), when capturing succeeds, as the following formulations: 
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where u is the weight of the rule, g is state of the prey agent, he,i denotes the state of agent e 
at i step ago from the current step, k denotes the reinforcement function, and   is the 
parameter. 
In the action phase, the target position is desirable to be decided as a sub-goal for 
surrounding task instead of final goal corresponding to the current state of the prey agent 
according to the rule weights. In this study, the target position of the agent is generated as: 

 
 , , ,

arg max ( , 1)
e

q

q h
v

u e g h
p q e






 
     (3) 

where he denotes the current position of the agent, v denotes candidate of the target position, 
q denotes the other agent, and μ is the parameter. Due to these state selections, the target 
position as valid sub-goal is generated and sent to the lower layer. 

3.4 Q-learning for lower layer 
In the lower layer, appropriate selection of concrete action to reach the target position 
decided at the upper layer should be fulfilled through reinforcement learning process. It 
should be noted that states of the other hunter agents are unnecessary for the lower task. 
The input state of the rule consists of the target position and the current own position. At 
every step in learning trial, the learning of the lower layer is employed because we can 
interpret every agent movement as the movement to current position considered as the 
movement to virtual targeted position according to another viewpoint. In the lower layer, 
Q-Learning (Sutton & Barto, 1998; Watkins & Dayan, 1988) can be applied successfully 
because the process is typical Markov Decision Process. Q-Learning is realized as: 

         , , , , , , ,, , , , max , , , ,e t e t e t e t t e t e t e tQ s a c Q s a c r Q s c Q s a c


        (4) 

where Q is Q-value, se,t is the state vector of the agent e at t-th step, ae,t is action of the agent e 
at t-th step, c denotes the state for updating, r denotes the reward, and α, γ are parameters. It 
should be noted that the current state of the agent moved from the other position always 
receive rewards considered as the virtual targeted state, internally. 

4. A modular fuzzy model 

4.1 Model structure 
As a fuzzy model having high applicability, Single Input Rule Modules(SIRMs) (Seki et al., 
2006; Yubazaki et al., 1997) was proposed. The idea is to unify reasoning outputs from fuzzy 
rule modules comprised with single input formed fuzzy if-then rules. The number of rules 
can be drastically reduced as well as bringing us high maintainability in actual application. 
However, its disadvantage of low precision is inevitable in order to apply the method to 

huge multi-dimensional problems. I extend the SIRMs method by relaxing the restriction of 
the input space, i.e. single, to arbitrary subspace of the rule. 
I propose a “Modular Fuzzy Model”, for constructing the model of huge multi-dimensional 
space. Description of the model is as follows: 
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where “Rules-i” stands for the i-th fuzzy rule module, Pi(x) denotes predetermined 
projection of the input vector x in i-th module, yi is the output variable, and n is the number 
of rule modules. The number of constituent rules in the i-th fuzzy rule module is mi. f is the 
function of consequent part of the rule like TSK-fuzzy model (Takagi & Sugeno, 1985). i

jA  

denotes the fuzzy sets defined in the projected space. 
The membership degree of the antecedent part of j-th rule in “Rules-i” module is calculated 
as: 

 0( ( ))i i
j j ih A P x   (6) 

where h denotes the membership degree and x0 is an input vector. The output of fuzzy 
reasoning of each module is decided as the following equation. 
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The final output of the “Modular Fuzzy Model” is formulated as: 

 0 0

1

n

i i
i

y w y


    (8) 

where wi denotes the parameter of importance of the i-th rule module. The parameter can be 
also formulated as the output of rule based system like modular neural network structure 
(Auda & Kamel, 1999). Figure 7 shows the structure of Modular Fuzzy Model. 
 

www.intechopen.com



Hierarchical Reinforcement Learning Using a Modular Fuzzy Model for Multi-Agent Problem 143

 
     
    ),1...,,1,0(,,,1,,,

,,,,,,,,,

,,1,1,1

,,,,,,

emihhgekhhgek

hhgekhhgeuhhgeu

iieiiiei

iieiiieiiiei





 
 


  (2) 

where u is the weight of the rule, g is state of the prey agent, he,i denotes the state of agent e 
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where wi denotes the parameter of importance of the i-th rule module. The parameter can be 
also formulated as the output of rule based system like modular neural network structure 
(Auda & Kamel, 1999). Figure 7 shows the structure of Modular Fuzzy Model. 
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4.2 Application of modular fuzzy model for upper layer 
I tackle to the “curse of dimensionality” in the multi-agent pursuit problem using above 
proposed modular fuzzy model method. The objective of this study is to restrain memory 
consumption of rules in reinforcement learning keeping its performance. In this study, the 
function of consequent part in Eq.(5) is defined as parameter of “real value”, i.e. simplified 
fuzzy reasoning model (Ichihashi & Watanabe, 1990), in order for applying to the pursuit 
problem as: 

 

11 1
1 1 1

1

1

1:{ ( ) }

:{ ( ) }

:{ ( ) }

i

n

m
j j j

mi i
i j i j j

mn n
n j n j j

Rules if P x is A then y b

Rules i if P x is A then y b

Rules n if P x is A then y b







 

 

 




  (9) 

The importance parameter in Eq.(8) is set as 1.0 in this study. Instead of “crisp type” 
modular model described in section 3.3, I apply the modular fuzzy model to the upper layer 
model in the hierarchical reinforcement learning for pursuit problem. In addition to the 
usual crisp partition of the agent position as shown in Fig.8, fuzzy sets of the position are 
defined as shown in Fig.9. The antecedent fuzzy sets are defined by Cartesian products of 
each fuzzy set on the state of the agent position.  
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u in Eq.(2) is calculated by the modular fuzzy model and is learned considering the 
membership degree of the rules by the profit sharing algorithm. In this study, I assume that 
the number of fuzzy sets and parameters in the premise part is decided in advance. The 
parameters of real value in the consequent part are learned by the profit-sharing algorithm. 
The parameters are modified as: 
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where k denotes the reinforcement function in Eq.(2). The denominator in Eq.(10) can be 
omitted in actual processing because its value is always 1.0 from the definition of fuzzy sets 
described above. 
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The importance parameter in Eq.(8) is set as 1.0 in this study. Instead of “crisp type” 
modular model described in section 3.3, I apply the modular fuzzy model to the upper layer 
model in the hierarchical reinforcement learning for pursuit problem. In addition to the 
usual crisp partition of the agent position as shown in Fig.8, fuzzy sets of the position are 
defined as shown in Fig.9. The antecedent fuzzy sets are defined by Cartesian products of 
each fuzzy set on the state of the agent position.  
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u in Eq.(2) is calculated by the modular fuzzy model and is learned considering the 
membership degree of the rules by the profit sharing algorithm. In this study, I assume that 
the number of fuzzy sets and parameters in the premise part is decided in advance. The 
parameters of real value in the consequent part are learned by the profit-sharing algorithm. 
The parameters are modified as: 
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where k denotes the reinforcement function in Eq.(2). The denominator in Eq.(10) can be 
omitted in actual processing because its value is always 1.0 from the definition of fuzzy sets 
described above. 
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Fig. 10. Initial Placement of the Agents in 5x5 environment 

5. Numerical experiments 

5.1 Results compared with conventional learning methods 
In the pursuit problem, the performance of the proposed hierarchical modular 
reinforcement learning method is compared with conventional methods through computer 
simulations. The size of the pursuit problem is 5x5. The absolute coordinate of the agent 
position is used in the experiments. The reason why relative coordinate is not used in the 
experiments is to evaluate essential performance of the proposed algorithm in terms of 
precision of learning, learning speed, and the memory consumption. As basic simulation 
conditions, each agent cannot communicate each other but can monitor the position of the 
other agents. The rule of the prey agent behavior is set as random behavior because the 
random behavior theoretically involves every action strategies. The initial placement of the 
prey agent and the hunter agents is shown in Fig.10. 
The proposed methods are compared with the simple Q-Learning algorithm in order to 
evaluate basic performance of the methods. In the experiments, it is assumed that the Q-
Learning agent(not hierarchically structured) can only utilize the position of the prey agent 
in addition to own position. The Q-Learning agent decides the action by calculating Q-value 
defined as Q(g, se, ae) from the sensed position of the prey agent and own position, where se 
is the position of the agent e, ae is the corresponding action of the agent e, and g is the 
position of the prey agent. 
As for hierarchical modular reinforcement learning agents, three methods are simulated. 
The expressions of the upper layer are different, though their hierarchical structures and the 
lower layer driven by Q-Learning are the same. The first method is structured as the 
complete expressed upper layer. From all positions of the hunter agents and the prey agent, 
the target position to move is decided. The number of rules in upper layer is 
25*25*25*25*25=9,765,625. The second method is “crisp” modular model for upper layer. 
The number of rules in upper layer of each agent is (25*25*25*25)*3= 1,171,875. The last 
method is the modular fuzzy model for upper layer. Detailed constructions of the model are 
described in next subsection. For example, the 1st agent of the modular fuzzy model for 
upper layer is constructed as: 
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Fig. 11. Simulation Results 

where g is the position of the prey agent, h is the position of the hunter agent, and b is the 
parameter of consequent part of the fuzzy rule. The fuzzy set A is constructed by 
combining the crisp sets of own agent position and prey agent position with the fuzzy sets 
of the other two hunter agent positions defined by partitioning the grid into 33 as shown 
in Fig.9. The number of rules in upper layer is much smaller than the others, i.e. 
(25*25*9*9)*3=151,875. 
I perform the simulation 20 times for each method. The number of trials in the simulation 
are 20,000. The results are shown in Fig.11. The depicted data is averaged value of 20 series 
after averaging each sequential 100 trials. The results by the modular fuzzy model(depicted 
as ModFuzzy) show the best performance compared with the other methods. Both the 
learning speed and the precision of learning are desirable. Furthermore required memory 
amount is much smaller than the other methods. The results by “crisp” modular 
model(depicted as CrispMod) show also good performance. The complete expression 
model(depicted as NonMod) cannot acquire rules efficiently and the performance is 
deteriorated over time. This seems to be caused by the sparsity of model expression. The 
simple Q-Learning agent (NonH-Q) is not so bad unexpectedly in the small 55 grid world. 
The strategy only to approach to the prey agent acquired by the simple non-hierarchical Q-
Learning might be reasonable in such small world. However, as the knowlede about 
surrounding task cannot be learned at all in such model expression, successful surrounding 
completely depends upon accidental behavior of the prey agent.  

5.2 Detailed results by proposed model 
In order to construct the modular fuzzy model, the important issue is to decide the 
dimension of projection in rule modules. Furthermore the number of partition should be 
also decided appropriately. In the pursuit problem, as the positions of own agent and the 
prey agent are indispensable by nature, the issue is restricted to decide the number of the 
other hunter agents included in model expression and the number of partition, i.e. crisp or 
fuzzy. In this study, the projection is extended step by step through modeling(reinforcement 
learning) from one other hunter agent added. The number of partition for each position is 
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Fig. 11. Simulation Results 

where g is the position of the prey agent, h is the position of the hunter agent, and b is the 
parameter of consequent part of the fuzzy rule. The fuzzy set A is constructed by 
combining the crisp sets of own agent position and prey agent position with the fuzzy sets 
of the other two hunter agent positions defined by partitioning the grid into 33 as shown 
in Fig.9. The number of rules in upper layer is much smaller than the others, i.e. 
(25*25*9*9)*3=151,875. 
I perform the simulation 20 times for each method. The number of trials in the simulation 
are 20,000. The results are shown in Fig.11. The depicted data is averaged value of 20 series 
after averaging each sequential 100 trials. The results by the modular fuzzy model(depicted 
as ModFuzzy) show the best performance compared with the other methods. Both the 
learning speed and the precision of learning are desirable. Furthermore required memory 
amount is much smaller than the other methods. The results by “crisp” modular 
model(depicted as CrispMod) show also good performance. The complete expression 
model(depicted as NonMod) cannot acquire rules efficiently and the performance is 
deteriorated over time. This seems to be caused by the sparsity of model expression. The 
simple Q-Learning agent (NonH-Q) is not so bad unexpectedly in the small 55 grid world. 
The strategy only to approach to the prey agent acquired by the simple non-hierarchical Q-
Learning might be reasonable in such small world. However, as the knowlede about 
surrounding task cannot be learned at all in such model expression, successful surrounding 
completely depends upon accidental behavior of the prey agent.  

5.2 Detailed results by proposed model 
In order to construct the modular fuzzy model, the important issue is to decide the 
dimension of projection in rule modules. Furthermore the number of partition should be 
also decided appropriately. In the pursuit problem, as the positions of own agent and the 
prey agent are indispensable by nature, the issue is restricted to decide the number of the 
other hunter agents included in model expression and the number of partition, i.e. crisp or 
fuzzy. In this study, the projection is extended step by step through modeling(reinforcement 
learning) from one other hunter agent added. The number of partition for each position is 
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changed as well as the dimension. The results are summarized in Table 1. In this Table, 
averaged value, standard deviation, and standard error of episode lengh average of last 100 
trials in 20 times simulation are shown as well as the number of partition and the number of  
 

Notes of Model ID:   m5533x       
The number of partition: Target, Own, Other1, Other 2, Other3

m : modular fuzzy model       3 : fuzzy partition 
c  : crisp modular model      5 : crisp partition
u  : usual memory type        x : void ( not used in model)

Target Own Other1 Other2 Other3 Average Standard Deviation Standard Error
m333xx 9 9 9 2,187 225.77 310.71 69.48
m533xx 25 9 9 6,075 142.76 68.08 15.22
m335xx 9 9 25 6,075 98.27 44.75 10.01
m353xx 9 25 9 6,075 8.25 1.70 0.38
m535xx 25 9 25 16,875 121.99 85.53 19.12
m553xx 25 25 9 16,875 5.97 0.50 0.11
m355xx 9 25 25 16,875 10.94 1.06 0.24
c555xx 25 25 25 46,875 11.30 22.20 4.96
m3355x 9 9 25 25 151,875 115.76 33.90 6.92
m5533x 25 25 9 9 151,875 5.81 0.33 0.07
c5555x 25 25 25 25 1,171,875 9.07 0.67 0.14
u55555 25 25 25 25 25 9,765,625 271.49 283.88 63.48
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Table 1. Detailed Results of Modular Model 

0

2

4

6

8

10

12

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

The number of Trials(x100, Averaged)

Ep
iso

de
 L

en
gt

h 
w

ith
 S

D

m5533x

c5555x

0

2

4

6

8

10

12

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

The number of Trials(x100, Averaged)

Ep
iso

de
 L

en
gt

h 
w

ith
 S

D

m5533x

c5555x

 
Fig. 12. Comparison of Modular Fuzzy Model and Crisp Modular Model 

rules corresponding to the model. From the results of first four models, own position of the 
agent might be partitioned by crisp sets, i.e. m353xx. From further results of next four 
models, own position of the agent and position of the target, i.e. prey agent, might be 
partitioned by crisp sets, i.e. m553xx. From these obserbations, the model construction is 
heuristically performed as shown in the last four results in the Table. From the results 
m5533x model has best performance among the models. Compared results with good 

model(c5555x) are shown in Fig.12. The significance of the m5533x model performance 
compared with the other good model performance is also investigated by the t test. The 
result compared with m553xx model is that null hypothesis, i.e. the means do not differ, is 
rejected with statistical significance level of 0.01. As the results compared with the other 
model are obvious, the description is omitted.  
The results by the proposed model are considered that the learned agent can perform 
surroundig task within six times movement against almost all behavior pattern of the prey 
agent. This level cannot be attained without collaborative behavior of the learned agent. In 
addition to its drastically improved learning speed, it can be said that the precision level of 
learning is sufficient compared with the conventional techniques. 

6. Conclusion 

In this chapter, I focused on the pursuit problem and proposed a hierarchical modular 
reinforcement learning that Profit Sharing learning algorithm is combined with Q Learning 
reinforcement learning algorithm hierarchically in multi-agent environment. As the model 
structure for such huge problem, I proposed a modular fuzzy model extending SIRMs 
architecture. Through numerical experiments, I showed the effectiveness of the proposed 
algorithm compared with the conventional algorithms. My future plan concerning with the 
proposed methods includes application of another multi-agent problem or complex task 
problem. 
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changed as well as the dimension. The results are summarized in Table 1. In this Table, 
averaged value, standard deviation, and standard error of episode lengh average of last 100 
trials in 20 times simulation are shown as well as the number of partition and the number of  
 

Notes of Model ID:   m5533x       
The number of partition: Target, Own, Other1, Other 2, Other3

m : modular fuzzy model       3 : fuzzy partition 
c  : crisp modular model      5 : crisp partition
u  : usual memory type        x : void ( not used in model)

Target Own Other1 Other2 Other3 Average Standard Deviation Standard Error
m333xx 9 9 9 2,187 225.77 310.71 69.48
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Table 1. Detailed Results of Modular Model 
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Fig. 12. Comparison of Modular Fuzzy Model and Crisp Modular Model 

rules corresponding to the model. From the results of first four models, own position of the 
agent might be partitioned by crisp sets, i.e. m353xx. From further results of next four 
models, own position of the agent and position of the target, i.e. prey agent, might be 
partitioned by crisp sets, i.e. m553xx. From these obserbations, the model construction is 
heuristically performed as shown in the last four results in the Table. From the results 
m5533x model has best performance among the models. Compared results with good 

model(c5555x) are shown in Fig.12. The significance of the m5533x model performance 
compared with the other good model performance is also investigated by the t test. The 
result compared with m553xx model is that null hypothesis, i.e. the means do not differ, is 
rejected with statistical significance level of 0.01. As the results compared with the other 
model are obvious, the description is omitted.  
The results by the proposed model are considered that the learned agent can perform 
surroundig task within six times movement against almost all behavior pattern of the prey 
agent. This level cannot be attained without collaborative behavior of the learned agent. In 
addition to its drastically improved learning speed, it can be said that the precision level of 
learning is sufficient compared with the conventional techniques. 

6. Conclusion 

In this chapter, I focused on the pursuit problem and proposed a hierarchical modular 
reinforcement learning that Profit Sharing learning algorithm is combined with Q Learning 
reinforcement learning algorithm hierarchically in multi-agent environment. As the model 
structure for such huge problem, I proposed a modular fuzzy model extending SIRMs 
architecture. Through numerical experiments, I showed the effectiveness of the proposed 
algorithm compared with the conventional algorithms. My future plan concerning with the 
proposed methods includes application of another multi-agent problem or complex task 
problem. 
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