
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Hierarchical Reinforcement Learning Using a Modular Fuzzy Model for Multi-Agent Problem 137

Hierarchical Reinforcement Learning Using a Modular Fuzzy Model for
Multi-Agent Problem

Toshihiko Watanabe

x

Hierarchical Reinforcement Learning
Using a Modular Fuzzy Model

for Multi-Agent Problem
Toshihiko Watanabe

Osaka Electro-Communication University
Japan

1. Introduction

Reinforcement learning (Sutton & Barto, 1998; Watkins & Dayan, 1998; Grefenstette, 1988;
Miyazaki et al., 1999; Miyazaki et al., 1999) among machine learning techniques is an
indispensable approach to realize the intelligent agent such as autonomous mobile robots.
The importance of the technique is discussed in several literatures. However there exist a lot
of problems compared with the other learning techniques such as Neural Networks in order
to apply reinforcement learning to actual applications. One of the main problems of
reinforcement learning application of actual sized problem is “curse of dimensionality”
problem in partition of multi-inputs sensory states. High dimension of input leads to huge
number of rules in the reinforcement learning application. It should be avoided maintaining
computational efficiency for actual applications. Multi-agent problem such as the pursuit
problem (Benda et al., 1985; Ito & Kanabuchi, 2001) is typical difficult problem for
reinforcement learning computation in terms of huge dimensionality. As the other related
problem, learning of complex task is not easy essentially because the reinforcement learning
is based only upon rewards derived from the environment.
In order to deal with these problems, several effective approaches are studied. For relaxation
of task complexity, several types of hierarchical reinforcement learning have been proposed
to apply actual applications (Takahashi & Asada, 1999; Morimoto & Doya, 2000). To avoid
the curse of dimensionality, there exists modular hierarchical learning (Ono & Fukumoto,
1996; Fujita & Matsuno, 2005) that construct the learning model as the combination of
subspaces. Adaptive segmentation (Murano & Kitamura, 1997; Hamagami et al.,2003) for
constructing the learning model validly corresponding to the environment is also studied.
However more effective technique of different approach is also necessary in order to apply
reinforcement learning to actual sized problems.
In this chapter, I focus on the well-known pursuit problem and propose a hierarchical
modular reinforcement learning that Profit Sharing learning algorithm is combined with Q
Learning reinforcement learning algorithm hierarchically in multi-agent environment. As
the model structure for such huge problem, I propose a modular fuzzy model extending
SIRMs architecture (Seki et al., 2006; Yubazaki et al., 1997). Through numerical experiments,
I show the effectiveness of the proposed algorithm compared with the conventional
algorithms.

9

www.intechopen.com

New Advances in Machine Learning138

The chapter is organized as follows. In section 2, an overview of pursuit problem as multi-
agent environment is presented. In section 3, I propose construction of agent model and
essential learning algorithms of a hierarchical reinforcement learning using a modular
model architecture. In section 4, I propose a modular fuzzy model for agent model
construction. The results of numerical experiments are shown in section 5. Finally,
conclusions are drawn in section 6.

2. Pursuit problem as multi-agent environment

The pursuit problem is well known and has been studied as typical benchmark problem in
Distributed Artificial Intelligence research field (Benda et al., 1985). It is multi-agent based
problem that hunter agents act collaboratively to capture prey agent. Figure 1 shows the 4-
agent pursuit problem in 77 grids field. In the problem, all agent behave in turn to move
upward, downward, rightward, leftward in one gird, or to stay. Collision of the agents is
prohibited because one grid allows only one agent to stay. The objective of the simulation is
to surround the prey agent by the hunter agents as shown in Fig.2.

Wall

: Prey Agent

: Hunter Agent

Wall

: Prey Agent

: Hunter Agent

: Prey Agent

: Hunter Agent

Fig. 1. 4-Pursuit Problem(7x7 grids)

Successful Capturing
(utilizing the wall)

Wall

Not Yet Capture

: Prey Agent

: Hunter Agent

Successful Capturing
(utilizing the wall)

Wall

Not Yet Capture

: Prey Agent

: Hunter Agent

Successful Capturing
(utilizing the wall)

Wall

Not Yet Capture

: Prey Agent

: Hunter Agent

: Prey Agent

: Hunter Agent

Fig. 2. Examples of Capturing Condition in Pursuit Problem

The hunter agents can utilize walls for surrounding as well as surrounding by whole hunter
agents. When the surrounding is successfully performed, related hunter agents receive

reward from the environment to carry out reinforcement learning. As for behavior of the
prey agent, it behaves to run away from the nearest hunter agent for playing a fugitive role.
For actual computer simulations or mobile robot applications, it is indispensable to avoid
huge memory consumption for the state space, i.e. “curse of dimensionality”, and to
improve slow learning speed caused by its sparsity(e.g. acquired Q-value through
reinforcement learning). In this study, I focus on the 4-agent pursuit problem to improve
precision and efficiency of reinforcement learning in multi-agent environment and to
demonstrate settlement of “curse of dimensionality”.
For simulation study, I adopt “soft-max” strategy for selecting the action of the hunter
agents. The conditional probability based on Boltzmman distribution for action selection is
as follows:

 1

exp (,) /
| ,

exp (,) /
t

t t
td N

w s a T
p a s T T

w s d T

 (1)

where Tt is temperature at t-th iteration, s is state vector, a is the action of the agent, β is the
parameter for temperature cooling(0<β<1), w denotes evaluation value for state-and-action
pair, and N denotes the set of all alternative action at the state s. Owing to this mechanism,
the hunter agent act like random walk(exploring) with high temperature value in the early
simulation trials and act definitely based on acquired evaluation values in the later
simulation trials according to the lowered temperature value.

3. A hierarchical reinforcement learning using modular model architecture

3.1 Basic concepts
There exist two problems to solve the pursuit problem efficiently. One is huge memory
consumption for internal knowledge expression of the agents expressed as evaluation
weights corresponding to the pair of state-and-action caused by the grid size of the
environment and the number of hunter agents. In order to restrain the increase of required
memory for the agents, modular structure is applied for expression of the agent knowledge
base. The other is complex objective, i.e. surrounding the prey collaboratively. In general, it is
effective for dealing with such complex task to decompose into sub-tasks. Then I decompose
the task into hierarchical sub-tasks to fulfill reinforcement learning effectively. I propose a
hierarchical modular reinforcement learning to solve the above described two problems in
the multi-agent pursuit simulation.

3.2 Hierarchical task decomposition for agent learning
It is difficult to decide how many kinds of subtask should be decomposed into. In this study,
I empirically decompose the surrounding task(capturing) into “decision of move position
target” for surrounding according to current monitored state and “selection of appropriate
action” to move to the target position of each agent. The latter task is native, isolated from
the other hunter agents, and is not needed to be collaborative such as position control of the
single agent. In other words, the task is decomposed into “surrounding” task synchronized
with the other hunter agents and “exploring the environment” task. Moreover, the upper
task corresponds only to collaborative surrounding strategy. Figure 3 shows the internal
hierarchical structure of the hunter agent. The knowledge base of the agent is composed of
the “Rules in Upper Layer” and the “Rules in Lower Layer” as shown in the figure. It is

www.intechopen.com

Hierarchical Reinforcement Learning Using a Modular Fuzzy Model for Multi-Agent Problem 139

The chapter is organized as follows. In section 2, an overview of pursuit problem as multi-
agent environment is presented. In section 3, I propose construction of agent model and
essential learning algorithms of a hierarchical reinforcement learning using a modular
model architecture. In section 4, I propose a modular fuzzy model for agent model
construction. The results of numerical experiments are shown in section 5. Finally,
conclusions are drawn in section 6.

2. Pursuit problem as multi-agent environment

The pursuit problem is well known and has been studied as typical benchmark problem in
Distributed Artificial Intelligence research field (Benda et al., 1985). It is multi-agent based
problem that hunter agents act collaboratively to capture prey agent. Figure 1 shows the 4-
agent pursuit problem in 77 grids field. In the problem, all agent behave in turn to move
upward, downward, rightward, leftward in one gird, or to stay. Collision of the agents is
prohibited because one grid allows only one agent to stay. The objective of the simulation is
to surround the prey agent by the hunter agents as shown in Fig.2.

Wall

: Prey Agent

: Hunter Agent

Wall

: Prey Agent

: Hunter Agent

: Prey Agent

: Hunter Agent

Fig. 1. 4-Pursuit Problem(7x7 grids)

Successful Capturing
(utilizing the wall)

Wall

Not Yet Capture

: Prey Agent

: Hunter Agent

Successful Capturing
(utilizing the wall)

Wall

Not Yet Capture

: Prey Agent

: Hunter Agent

Successful Capturing
(utilizing the wall)

Wall

Not Yet Capture

: Prey Agent

: Hunter Agent

: Prey Agent

: Hunter Agent

Fig. 2. Examples of Capturing Condition in Pursuit Problem

The hunter agents can utilize walls for surrounding as well as surrounding by whole hunter
agents. When the surrounding is successfully performed, related hunter agents receive

reward from the environment to carry out reinforcement learning. As for behavior of the
prey agent, it behaves to run away from the nearest hunter agent for playing a fugitive role.
For actual computer simulations or mobile robot applications, it is indispensable to avoid
huge memory consumption for the state space, i.e. “curse of dimensionality”, and to
improve slow learning speed caused by its sparsity(e.g. acquired Q-value through
reinforcement learning). In this study, I focus on the 4-agent pursuit problem to improve
precision and efficiency of reinforcement learning in multi-agent environment and to
demonstrate settlement of “curse of dimensionality”.
For simulation study, I adopt “soft-max” strategy for selecting the action of the hunter
agents. The conditional probability based on Boltzmman distribution for action selection is
as follows:

 1

exp (,) /
| ,

exp (,) /
t

t t
td N

w s a T
p a s T T

w s d T

 (1)

where Tt is temperature at t-th iteration, s is state vector, a is the action of the agent, β is the
parameter for temperature cooling(0<β<1), w denotes evaluation value for state-and-action
pair, and N denotes the set of all alternative action at the state s. Owing to this mechanism,
the hunter agent act like random walk(exploring) with high temperature value in the early
simulation trials and act definitely based on acquired evaluation values in the later
simulation trials according to the lowered temperature value.

3. A hierarchical reinforcement learning using modular model architecture

3.1 Basic concepts
There exist two problems to solve the pursuit problem efficiently. One is huge memory
consumption for internal knowledge expression of the agents expressed as evaluation
weights corresponding to the pair of state-and-action caused by the grid size of the
environment and the number of hunter agents. In order to restrain the increase of required
memory for the agents, modular structure is applied for expression of the agent knowledge
base. The other is complex objective, i.e. surrounding the prey collaboratively. In general, it is
effective for dealing with such complex task to decompose into sub-tasks. Then I decompose
the task into hierarchical sub-tasks to fulfill reinforcement learning effectively. I propose a
hierarchical modular reinforcement learning to solve the above described two problems in
the multi-agent pursuit simulation.

3.2 Hierarchical task decomposition for agent learning
It is difficult to decide how many kinds of subtask should be decomposed into. In this study,
I empirically decompose the surrounding task(capturing) into “decision of move position
target” for surrounding according to current monitored state and “selection of appropriate
action” to move to the target position of each agent. The latter task is native, isolated from
the other hunter agents, and is not needed to be collaborative such as position control of the
single agent. In other words, the task is decomposed into “surrounding” task synchronized
with the other hunter agents and “exploring the environment” task. Moreover, the upper
task corresponds only to collaborative surrounding strategy. Figure 3 shows the internal
hierarchical structure of the hunter agent. The knowledge base of the agent is composed of
the “Rules in Upper Layer” and the “Rules in Lower Layer” as shown in the figure. It is

www.intechopen.com

New Advances in Machine Learning140

important to keep learning capability as well as task decomposition. According to the two-
layered decomposition, rules in the lower layer can be adapted corresponding to the agent
behavior in every step as Markov Decision Process, as shown in Fig.4.

(Monitored State) Then (Target Position)

Rules in Upper Layer

Action

Sensory
Input

Rules in Lower Layer

(Target Position) Then (Action)

Agent

Profit Sharing

Q-Learning

IF

IF

(Monitored State) Then (Target Position)

Rules in Upper Layer

Action

Sensory
Input

Rules in Lower Layer

(Target Position) Then (Action)

Agent

Profit Sharing

Q-Learning

IF

IF

Fig. 3. Internal Hierarchical Structure of Hunter Agent

Upper Layer Lower Layer

Learning of Target Position Corresponding to
States of Prey Agent and the Other Hunter Agent

Learning of Rules for Reaching Quickly
to the Target Position

To Move Quickly to Surround the Prey Corresponding to
States of the Other Agents (Collaborative Behavior)

Upper Layer Lower Layer

Learning of Target Position Corresponding to
States of Prey Agent and the Other Hunter Agent

Learning of Rules for Reaching Quickly
to the Target Position

To Move Quickly to Surround the Prey Corresponding to
States of the Other Agents (Collaborative Behavior)

Upper Layer Lower Layer

Learning of Target Position Corresponding to
States of Prey Agent and the Other Hunter Agent

Learning of Rules for Reaching Quickly
to the Target Position

To Move Quickly to Surround the Prey Corresponding to
States of the Other Agents (Collaborative Behavior)

Fig. 4. Conceptual Diagram of Hierarchical Task Decomposition

3.3 A modular profit sharing learning for upper layer
In the upper layer, the target position of the agent is decided based on observed state such
as the current position of the prey agent and the other hunter agents. The rules in the upper
layer express goodness of the target position corresponding to the current state excluding
actual actions. In order to construct the rules based on the current state combination, huge
corresponding memory is needed. To avoid such requirement, the authors applied modular
structure for the rule expression (Takahashi & Watanabe, 2006) in the upper layer as shown
in Fig.5. In this section, the dimension of modular model is assumed to be three for

explanation simplicity. Higher dimension can also be considered as the same manner.
Original state space of each agent is expressed as the modular model by covering with three
subspaces of oneself-and-another pair as shown in Fig.6.

),,,1(
),,,1(
),,,1(

41

31

21

ssg
ssg
ssg

),,,2(
),,,2(
),,,2(

42

32

12

ssg
ssg
ssg

),,,3(
),,,3(
),,,3(

43

23

13

ssg
ssg
ssg

),,,4(
),,,4(
),,,4(

34

24

14

ssg
ssg
ssg

State Space

State Subspace of
Agent #2

State Subspace of
Agent #1

),,,,(4321 ssssg

State Subpace of
Agent #4

State Subspace of
Agent #3

Learning of Each State Subspace

Fig. 5. Modular Structure of Agent State Maps

Fig. 6. An Example of Modular Structured Maps

The weights of rules in the upper layer are updated by Profit Sharing learning
algorithm(Miyazaki et al., 1999), when capturing succeeds, as the following formulations:

www.intechopen.com

Hierarchical Reinforcement Learning Using a Modular Fuzzy Model for Multi-Agent Problem 141

important to keep learning capability as well as task decomposition. According to the two-
layered decomposition, rules in the lower layer can be adapted corresponding to the agent
behavior in every step as Markov Decision Process, as shown in Fig.4.

(Monitored State) Then (Target Position)

Rules in Upper Layer

Action

Sensory
Input

Rules in Lower Layer

(Target Position) Then (Action)

Agent

Profit Sharing

Q-Learning

IF

IF

(Monitored State) Then (Target Position)

Rules in Upper Layer

Action

Sensory
Input

Rules in Lower Layer

(Target Position) Then (Action)

Agent

Profit Sharing

Q-Learning

IF

IF

Fig. 3. Internal Hierarchical Structure of Hunter Agent

Upper Layer Lower Layer

Learning of Target Position Corresponding to
States of Prey Agent and the Other Hunter Agent

Learning of Rules for Reaching Quickly
to the Target Position

To Move Quickly to Surround the Prey Corresponding to
States of the Other Agents (Collaborative Behavior)

Upper Layer Lower Layer

Learning of Target Position Corresponding to
States of Prey Agent and the Other Hunter Agent

Learning of Rules for Reaching Quickly
to the Target Position

To Move Quickly to Surround the Prey Corresponding to
States of the Other Agents (Collaborative Behavior)

Upper Layer Lower Layer

Learning of Target Position Corresponding to
States of Prey Agent and the Other Hunter Agent

Learning of Rules for Reaching Quickly
to the Target Position

To Move Quickly to Surround the Prey Corresponding to
States of the Other Agents (Collaborative Behavior)

Fig. 4. Conceptual Diagram of Hierarchical Task Decomposition

3.3 A modular profit sharing learning for upper layer
In the upper layer, the target position of the agent is decided based on observed state such
as the current position of the prey agent and the other hunter agents. The rules in the upper
layer express goodness of the target position corresponding to the current state excluding
actual actions. In order to construct the rules based on the current state combination, huge
corresponding memory is needed. To avoid such requirement, the authors applied modular
structure for the rule expression (Takahashi & Watanabe, 2006) in the upper layer as shown
in Fig.5. In this section, the dimension of modular model is assumed to be three for

explanation simplicity. Higher dimension can also be considered as the same manner.
Original state space of each agent is expressed as the modular model by covering with three
subspaces of oneself-and-another pair as shown in Fig.6.

),,,1(
),,,1(
),,,1(

41

31

21

ssg
ssg
ssg

),,,2(
),,,2(
),,,2(

42

32

12

ssg
ssg
ssg

),,,3(
),,,3(
),,,3(

43

23

13

ssg
ssg
ssg

),,,4(
),,,4(
),,,4(

34

24

14

ssg
ssg
ssg

State Space

State Subspace of
Agent #2

State Subspace of
Agent #1

),,,,(4321 ssssg

State Subpace of
Agent #4

State Subspace of
Agent #3

Learning of Each State Subspace

Fig. 5. Modular Structure of Agent State Maps

Fig. 6. An Example of Modular Structured Maps

The weights of rules in the upper layer are updated by Profit Sharing learning
algorithm(Miyazaki et al., 1999), when capturing succeeds, as the following formulations:

www.intechopen.com

New Advances in Machine Learning142

),1...,,1,0(,,,1,,,

,,,,,,,,,

,,1,1,1

,,,,,,

emihhgekhhgek

hhgekhhgeuhhgeu

iieiiiei

iieiiieiiiei

 (2)

where u is the weight of the rule, g is state of the prey agent, he,i denotes the state of agent e
at i step ago from the current step, k denotes the reinforcement function, and is the
parameter.
In the action phase, the target position is desirable to be decided as a sub-goal for
surrounding task instead of final goal corresponding to the current state of the prey agent
according to the rule weights. In this study, the target position of the agent is generated as:

 , , ,

arg max (, 1)
e

q

q h
v

u e g h
p q e

 (3)

where he denotes the current position of the agent, v denotes candidate of the target position,
q denotes the other agent, and μ is the parameter. Due to these state selections, the target
position as valid sub-goal is generated and sent to the lower layer.

3.4 Q-learning for lower layer
In the lower layer, appropriate selection of concrete action to reach the target position
decided at the upper layer should be fulfilled through reinforcement learning process. It
should be noted that states of the other hunter agents are unnecessary for the lower task.
The input state of the rule consists of the target position and the current own position. At
every step in learning trial, the learning of the lower layer is employed because we can
interpret every agent movement as the movement to current position considered as the
movement to virtual targeted position according to another viewpoint. In the lower layer,
Q-Learning (Sutton & Barto, 1998; Watkins & Dayan, 1988) can be applied successfully
because the process is typical Markov Decision Process. Q-Learning is realized as:

 , , , , , , ,, , , , max , , , ,e t e t e t e t t e t e t e tQ s a c Q s a c r Q s c Q s a c

 (4)

where Q is Q-value, se,t is the state vector of the agent e at t-th step, ae,t is action of the agent e
at t-th step, c denotes the state for updating, r denotes the reward, and α, γ are parameters. It
should be noted that the current state of the agent moved from the other position always
receive rewards considered as the virtual targeted state, internally.

4. A modular fuzzy model

4.1 Model structure
As a fuzzy model having high applicability, Single Input Rule Modules(SIRMs) (Seki et al.,
2006; Yubazaki et al., 1997) was proposed. The idea is to unify reasoning outputs from fuzzy
rule modules comprised with single input formed fuzzy if-then rules. The number of rules
can be drastically reduced as well as bringing us high maintainability in actual application.
However, its disadvantage of low precision is inevitable in order to apply the method to

huge multi-dimensional problems. I extend the SIRMs method by relaxing the restriction of
the input space, i.e. single, to arbitrary subspace of the rule.
I propose a “Modular Fuzzy Model”, for constructing the model of huge multi-dimensional
space. Description of the model is as follows:

11 1
1 1 1 1

1

1

1:{ () (())}

:{ () (())}

:{ () (())}

i

n

m
j j j

mi i
i j i j i j

mn n
n j n j n j

Rules if P x is A then y f P x

Rules i if P x is A then y f P x

Rules n if P x is A then y f P x

 (5)

where “Rules-i” stands for the i-th fuzzy rule module, Pi(x) denotes predetermined
projection of the input vector x in i-th module, yi is the output variable, and n is the number
of rule modules. The number of constituent rules in the i-th fuzzy rule module is mi. f is the
function of consequent part of the rule like TSK-fuzzy model (Takagi & Sugeno, 1985). i

jA

denotes the fuzzy sets defined in the projected space.
The membership degree of the antecedent part of j-th rule in “Rules-i” module is calculated
as:

 0(())i i
j j ih A P x (6)

where h denotes the membership degree and x0 is an input vector. The output of fuzzy
reasoning of each module is decided as the following equation.

0

0 1

1

(())
i

i

m
i i
k k i

k
i m

i
k

k

h f P x
y

h

 (7)

The final output of the “Modular Fuzzy Model” is formulated as:

 0 0

1

n

i i
i

y w y

 (8)

where wi denotes the parameter of importance of the i-th rule module. The parameter can be
also formulated as the output of rule based system like modular neural network structure
(Auda & Kamel, 1999). Figure 7 shows the structure of Modular Fuzzy Model.

www.intechopen.com

Hierarchical Reinforcement Learning Using a Modular Fuzzy Model for Multi-Agent Problem 143

),1...,,1,0(,,,1,,,

,,,,,,,,,

,,1,1,1

,,,,,,

emihhgekhhgek

hhgekhhgeuhhgeu

iieiiiei

iieiiieiiiei

 (2)

where u is the weight of the rule, g is state of the prey agent, he,i denotes the state of agent e
at i step ago from the current step, k denotes the reinforcement function, and is the
parameter.
In the action phase, the target position is desirable to be decided as a sub-goal for
surrounding task instead of final goal corresponding to the current state of the prey agent
according to the rule weights. In this study, the target position of the agent is generated as:

 , , ,

arg max (, 1)
e

q

q h
v

u e g h
p q e

 (3)

where he denotes the current position of the agent, v denotes candidate of the target position,
q denotes the other agent, and μ is the parameter. Due to these state selections, the target
position as valid sub-goal is generated and sent to the lower layer.

3.4 Q-learning for lower layer
In the lower layer, appropriate selection of concrete action to reach the target position
decided at the upper layer should be fulfilled through reinforcement learning process. It
should be noted that states of the other hunter agents are unnecessary for the lower task.
The input state of the rule consists of the target position and the current own position. At
every step in learning trial, the learning of the lower layer is employed because we can
interpret every agent movement as the movement to current position considered as the
movement to virtual targeted position according to another viewpoint. In the lower layer,
Q-Learning (Sutton & Barto, 1998; Watkins & Dayan, 1988) can be applied successfully
because the process is typical Markov Decision Process. Q-Learning is realized as:

 , , , , , , ,, , , , max , , , ,e t e t e t e t t e t e t e tQ s a c Q s a c r Q s c Q s a c

 (4)

where Q is Q-value, se,t is the state vector of the agent e at t-th step, ae,t is action of the agent e
at t-th step, c denotes the state for updating, r denotes the reward, and α, γ are parameters. It
should be noted that the current state of the agent moved from the other position always
receive rewards considered as the virtual targeted state, internally.

4. A modular fuzzy model

4.1 Model structure
As a fuzzy model having high applicability, Single Input Rule Modules(SIRMs) (Seki et al.,
2006; Yubazaki et al., 1997) was proposed. The idea is to unify reasoning outputs from fuzzy
rule modules comprised with single input formed fuzzy if-then rules. The number of rules
can be drastically reduced as well as bringing us high maintainability in actual application.
However, its disadvantage of low precision is inevitable in order to apply the method to

huge multi-dimensional problems. I extend the SIRMs method by relaxing the restriction of
the input space, i.e. single, to arbitrary subspace of the rule.
I propose a “Modular Fuzzy Model”, for constructing the model of huge multi-dimensional
space. Description of the model is as follows:

11 1
1 1 1 1

1

1

1:{ () (())}

:{ () (())}

:{ () (())}

i

n

m
j j j

mi i
i j i j i j

mn n
n j n j n j

Rules if P x is A then y f P x

Rules i if P x is A then y f P x

Rules n if P x is A then y f P x

 (5)

where “Rules-i” stands for the i-th fuzzy rule module, Pi(x) denotes predetermined
projection of the input vector x in i-th module, yi is the output variable, and n is the number
of rule modules. The number of constituent rules in the i-th fuzzy rule module is mi. f is the
function of consequent part of the rule like TSK-fuzzy model (Takagi & Sugeno, 1985). i

jA

denotes the fuzzy sets defined in the projected space.
The membership degree of the antecedent part of j-th rule in “Rules-i” module is calculated
as:

 0(())i i
j j ih A P x (6)

where h denotes the membership degree and x0 is an input vector. The output of fuzzy
reasoning of each module is decided as the following equation.

0

0 1

1

(())
i

i

m
i i
k k i

k
i m

i
k

k

h f P x
y

h

 (7)

The final output of the “Modular Fuzzy Model” is formulated as:

 0 0

1

n

i i
i

y w y

 (8)

where wi denotes the parameter of importance of the i-th rule module. The parameter can be
also formulated as the output of rule based system like modular neural network structure
(Auda & Kamel, 1999). Figure 7 shows the structure of Modular Fuzzy Model.

www.intechopen.com

New Advances in Machine Learning144

IF x1 is A1
j THEN y=w1

j
IF x1 is A1

j THEN y=w1
j

IF (x1, x2) is A1j THEN y1=b1j

IF x1 is A1
j THEN y=w1

j
IF x1 is A1

j THEN y=w1
j

IF (x1, x3) is A2j THEN y2=b2j y

Module 1

Module 2

weight parameters

Output

IF x1 is A1
j THEN y=w1

j
IF x1 is A1

j THEN y=w1
j

IF (x1, x2) is A1j THEN y1=b1j

IF x1 is A1
j THEN y=w1

j
IF x1 is A1

j THEN y=w1
j

IF (x1, x3) is A2j THEN y2=b2j y

Module 1

Module 2

weight parameters

Output

Fig. 7. Modular Fuzzy Model

4.2 Application of modular fuzzy model for upper layer
I tackle to the “curse of dimensionality” in the multi-agent pursuit problem using above
proposed modular fuzzy model method. The objective of this study is to restrain memory
consumption of rules in reinforcement learning keeping its performance. In this study, the
function of consequent part in Eq.(5) is defined as parameter of “real value”, i.e. simplified
fuzzy reasoning model (Ichihashi & Watanabe, 1990), in order for applying to the pursuit
problem as:

11 1
1 1 1

1

1

1:{ () }

:{ () }

:{ () }

i

n

m
j j j

mi i
i j i j j

mn n
n j n j j

Rules if P x is A then y b

Rules i if P x is A then y b

Rules n if P x is A then y b

 (9)

The importance parameter in Eq.(8) is set as 1.0 in this study. Instead of “crisp type”
modular model described in section 3.3, I apply the modular fuzzy model to the upper layer
model in the hierarchical reinforcement learning for pursuit problem. In addition to the
usual crisp partition of the agent position as shown in Fig.8, fuzzy sets of the position are
defined as shown in Fig.9. The antecedent fuzzy sets are defined by Cartesian products of
each fuzzy set on the state of the agent position.

Membership Functions of
Horizontal Position

0.0

1.0

M
em

be
rs

hi
p

Fu
nc

tio
ns

 o
f

V
er

tic
al

 P
os

iti
on

1.
0

0.
0

V1
V2

V3
V4

V5

H1 H2 H3 H4 H5

5x5 = 25 partitions

Membership Functions of
Horizontal Position

0.0

1.0

M
em

be
rs

hi
p

Fu
nc

tio
ns

 o
f

V
er

tic
al

 P
os

iti
on

1.
0

0.
0

V1
V2

V3
V4

V5

H1 H2 H3 H4 H5

Membership Functions of
Horizontal Position

0.0

1.0

M
em

be
rs

hi
p

Fu
nc

tio
ns

 o
f

V
er

tic
al

 P
os

iti
on

1.
0

0.
0

V1
V2

V3
V4

V5

H1 H2 H3 H4 H5

5x5 = 25 partitions
Fig. 8. Usual Crisp Partition of Agent Position

u in Eq.(2) is calculated by the modular fuzzy model and is learned considering the
membership degree of the rules by the profit sharing algorithm. In this study, I assume that
the number of fuzzy sets and parameters in the premise part is decided in advance. The
parameters of real value in the consequent part are learned by the profit-sharing algorithm.
The parameters are modified as:

1

i

i
ji

j m
i
k

k

h
b k

h

 (10)

where k denotes the reinforcement function in Eq.(2). The denominator in Eq.(10) can be
omitted in actual processing because its value is always 1.0 from the definition of fuzzy sets
described above.

1.
0

0.
0

0.
5

0.0

0.5

1.0
HL HM HH

VL
VM

VH

M
em

be
rs

hi
p

Fu
nc

tio
ns

 o
f

V
er

tic
al

 P
os

iti
on

Membership Functions of
Horizontal Position

3x3 = 9 partitions1.
0

0.
0

0.
5

0.0

0.5

1.0
HL HM HH

VL
VM

VH

M
em

be
rs

hi
p

Fu
nc

tio
ns

 o
f

V
er

tic
al

 P
os

iti
on

Membership Functions of
Horizontal Position

3x3 = 9 partitions
Fig. 9. Fuzzy Partition of Agent Position

www.intechopen.com

Hierarchical Reinforcement Learning Using a Modular Fuzzy Model for Multi-Agent Problem 145

IF x1 is A1
j THEN y=w1

j
IF x1 is A1

j THEN y=w1
j

IF (x1, x2) is A1j THEN y1=b1j

IF x1 is A1
j THEN y=w1

j
IF x1 is A1

j THEN y=w1
j

IF (x1, x3) is A2j THEN y2=b2j y

Module 1

Module 2

weight parameters

Output

IF x1 is A1
j THEN y=w1

j
IF x1 is A1

j THEN y=w1
j

IF (x1, x2) is A1j THEN y1=b1j

IF x1 is A1
j THEN y=w1

j
IF x1 is A1

j THEN y=w1
j

IF (x1, x3) is A2j THEN y2=b2j y

Module 1

Module 2

weight parameters

Output

Fig. 7. Modular Fuzzy Model

4.2 Application of modular fuzzy model for upper layer
I tackle to the “curse of dimensionality” in the multi-agent pursuit problem using above
proposed modular fuzzy model method. The objective of this study is to restrain memory
consumption of rules in reinforcement learning keeping its performance. In this study, the
function of consequent part in Eq.(5) is defined as parameter of “real value”, i.e. simplified
fuzzy reasoning model (Ichihashi & Watanabe, 1990), in order for applying to the pursuit
problem as:

11 1
1 1 1

1

1

1:{ () }

:{ () }

:{ () }

i

n

m
j j j

mi i
i j i j j

mn n
n j n j j

Rules if P x is A then y b

Rules i if P x is A then y b

Rules n if P x is A then y b

 (9)

The importance parameter in Eq.(8) is set as 1.0 in this study. Instead of “crisp type”
modular model described in section 3.3, I apply the modular fuzzy model to the upper layer
model in the hierarchical reinforcement learning for pursuit problem. In addition to the
usual crisp partition of the agent position as shown in Fig.8, fuzzy sets of the position are
defined as shown in Fig.9. The antecedent fuzzy sets are defined by Cartesian products of
each fuzzy set on the state of the agent position.

Membership Functions of
Horizontal Position

0.0

1.0

M
em

be
rs

hi
p

Fu
nc

tio
ns

 o
f

V
er

tic
al

 P
os

iti
on

1.
0

0.
0

V1
V2

V3
V4

V5

H1 H2 H3 H4 H5

5x5 = 25 partitions

Membership Functions of
Horizontal Position

0.0

1.0

M
em

be
rs

hi
p

Fu
nc

tio
ns

 o
f

V
er

tic
al

 P
os

iti
on

1.
0

0.
0

V1
V2

V3
V4

V5

H1 H2 H3 H4 H5

Membership Functions of
Horizontal Position

0.0

1.0

M
em

be
rs

hi
p

Fu
nc

tio
ns

 o
f

V
er

tic
al

 P
os

iti
on

1.
0

0.
0

V1
V2

V3
V4

V5

H1 H2 H3 H4 H5

5x5 = 25 partitions
Fig. 8. Usual Crisp Partition of Agent Position

u in Eq.(2) is calculated by the modular fuzzy model and is learned considering the
membership degree of the rules by the profit sharing algorithm. In this study, I assume that
the number of fuzzy sets and parameters in the premise part is decided in advance. The
parameters of real value in the consequent part are learned by the profit-sharing algorithm.
The parameters are modified as:

1

i

i
ji

j m
i
k

k

h
b k

h

 (10)

where k denotes the reinforcement function in Eq.(2). The denominator in Eq.(10) can be
omitted in actual processing because its value is always 1.0 from the definition of fuzzy sets
described above.

1.
0

0.
0

0.
5

0.0

0.5

1.0
HL HM HH

VL
VM

VH

M
em

be
rs

hi
p

Fu
nc

tio
ns

 o
f

V
er

tic
al

 P
os

iti
on

Membership Functions of
Horizontal Position

3x3 = 9 partitions1.
0

0.
0

0.
5

0.0

0.5

1.0
HL HM HH

VL
VM

VH

M
em

be
rs

hi
p

Fu
nc

tio
ns

 o
f

V
er

tic
al

 P
os

iti
on

Membership Functions of
Horizontal Position

3x3 = 9 partitions
Fig. 9. Fuzzy Partition of Agent Position

www.intechopen.com

New Advances in Machine Learning146

Fig. 10. Initial Placement of the Agents in 5x5 environment

5. Numerical experiments

5.1 Results compared with conventional learning methods
In the pursuit problem, the performance of the proposed hierarchical modular
reinforcement learning method is compared with conventional methods through computer
simulations. The size of the pursuit problem is 5x5. The absolute coordinate of the agent
position is used in the experiments. The reason why relative coordinate is not used in the
experiments is to evaluate essential performance of the proposed algorithm in terms of
precision of learning, learning speed, and the memory consumption. As basic simulation
conditions, each agent cannot communicate each other but can monitor the position of the
other agents. The rule of the prey agent behavior is set as random behavior because the
random behavior theoretically involves every action strategies. The initial placement of the
prey agent and the hunter agents is shown in Fig.10.
The proposed methods are compared with the simple Q-Learning algorithm in order to
evaluate basic performance of the methods. In the experiments, it is assumed that the Q-
Learning agent(not hierarchically structured) can only utilize the position of the prey agent
in addition to own position. The Q-Learning agent decides the action by calculating Q-value
defined as Q(g, se, ae) from the sensed position of the prey agent and own position, where se
is the position of the agent e, ae is the corresponding action of the agent e, and g is the
position of the prey agent.
As for hierarchical modular reinforcement learning agents, three methods are simulated.
The expressions of the upper layer are different, though their hierarchical structures and the
lower layer driven by Q-Learning are the same. The first method is structured as the
complete expressed upper layer. From all positions of the hunter agents and the prey agent,
the target position to move is decided. The number of rules in upper layer is
25*25*25*25*25=9,765,625. The second method is “crisp” modular model for upper layer.
The number of rules in upper layer of each agent is (25*25*25*25)*3= 1,171,875. The last
method is the modular fuzzy model for upper layer. Detailed constructions of the model are
described in next subsection. For example, the 1st agent of the modular fuzzy model for
upper layer is constructed as:

1 1 50,625
1 2 3 1 1

2 2 50,625
1 2 4 2 1

3 3 50,625
1 3 4 3 1

1: { , , , }

2 : { , , , }

3 : { , , , }

j j j

j j j

j j j

Rules if g h h h is A then y b

Rules if g h h h is A then y b

Rules if g h h h is A then y b

 (11)

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160 180 200

The Number of Trials(x100)

Ep
iso

de
 L

en
gt

h(
A

ve
ra

ge
of

 2
0

tim
es

)

ModFuzzy(m5533x)
NonH-Q
NonMod
CrispMod(c5555x)

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160 180 200

The Number of Trials(x100)

Ep
iso

de
 L

en
gt

h(
A

ve
ra

ge
of

 2
0

tim
es

)

ModFuzzy(m5533x)
NonH-Q
NonMod
CrispMod(c5555x)

Fig. 11. Simulation Results

where g is the position of the prey agent, h is the position of the hunter agent, and b is the
parameter of consequent part of the fuzzy rule. The fuzzy set A is constructed by
combining the crisp sets of own agent position and prey agent position with the fuzzy sets
of the other two hunter agent positions defined by partitioning the grid into 33 as shown
in Fig.9. The number of rules in upper layer is much smaller than the others, i.e.
(25*25*9*9)*3=151,875.
I perform the simulation 20 times for each method. The number of trials in the simulation
are 20,000. The results are shown in Fig.11. The depicted data is averaged value of 20 series
after averaging each sequential 100 trials. The results by the modular fuzzy model(depicted
as ModFuzzy) show the best performance compared with the other methods. Both the
learning speed and the precision of learning are desirable. Furthermore required memory
amount is much smaller than the other methods. The results by “crisp” modular
model(depicted as CrispMod) show also good performance. The complete expression
model(depicted as NonMod) cannot acquire rules efficiently and the performance is
deteriorated over time. This seems to be caused by the sparsity of model expression. The
simple Q-Learning agent (NonH-Q) is not so bad unexpectedly in the small 55 grid world.
The strategy only to approach to the prey agent acquired by the simple non-hierarchical Q-
Learning might be reasonable in such small world. However, as the knowlede about
surrounding task cannot be learned at all in such model expression, successful surrounding
completely depends upon accidental behavior of the prey agent.

5.2 Detailed results by proposed model
In order to construct the modular fuzzy model, the important issue is to decide the
dimension of projection in rule modules. Furthermore the number of partition should be
also decided appropriately. In the pursuit problem, as the positions of own agent and the
prey agent are indispensable by nature, the issue is restricted to decide the number of the
other hunter agents included in model expression and the number of partition, i.e. crisp or
fuzzy. In this study, the projection is extended step by step through modeling(reinforcement
learning) from one other hunter agent added. The number of partition for each position is

www.intechopen.com

Hierarchical Reinforcement Learning Using a Modular Fuzzy Model for Multi-Agent Problem 147

Fig. 10. Initial Placement of the Agents in 5x5 environment

5. Numerical experiments

5.1 Results compared with conventional learning methods
In the pursuit problem, the performance of the proposed hierarchical modular
reinforcement learning method is compared with conventional methods through computer
simulations. The size of the pursuit problem is 5x5. The absolute coordinate of the agent
position is used in the experiments. The reason why relative coordinate is not used in the
experiments is to evaluate essential performance of the proposed algorithm in terms of
precision of learning, learning speed, and the memory consumption. As basic simulation
conditions, each agent cannot communicate each other but can monitor the position of the
other agents. The rule of the prey agent behavior is set as random behavior because the
random behavior theoretically involves every action strategies. The initial placement of the
prey agent and the hunter agents is shown in Fig.10.
The proposed methods are compared with the simple Q-Learning algorithm in order to
evaluate basic performance of the methods. In the experiments, it is assumed that the Q-
Learning agent(not hierarchically structured) can only utilize the position of the prey agent
in addition to own position. The Q-Learning agent decides the action by calculating Q-value
defined as Q(g, se, ae) from the sensed position of the prey agent and own position, where se
is the position of the agent e, ae is the corresponding action of the agent e, and g is the
position of the prey agent.
As for hierarchical modular reinforcement learning agents, three methods are simulated.
The expressions of the upper layer are different, though their hierarchical structures and the
lower layer driven by Q-Learning are the same. The first method is structured as the
complete expressed upper layer. From all positions of the hunter agents and the prey agent,
the target position to move is decided. The number of rules in upper layer is
25*25*25*25*25=9,765,625. The second method is “crisp” modular model for upper layer.
The number of rules in upper layer of each agent is (25*25*25*25)*3= 1,171,875. The last
method is the modular fuzzy model for upper layer. Detailed constructions of the model are
described in next subsection. For example, the 1st agent of the modular fuzzy model for
upper layer is constructed as:

1 1 50,625
1 2 3 1 1

2 2 50,625
1 2 4 2 1

3 3 50,625
1 3 4 3 1

1: { , , , }

2 : { , , , }

3 : { , , , }

j j j

j j j

j j j

Rules if g h h h is A then y b

Rules if g h h h is A then y b

Rules if g h h h is A then y b

 (11)

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160 180 200

The Number of Trials(x100)

Ep
iso

de
 L

en
gt

h(
A

ve
ra

ge
of

 2
0

tim
es

)

ModFuzzy(m5533x)
NonH-Q
NonMod
CrispMod(c5555x)

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160 180 200

The Number of Trials(x100)

Ep
iso

de
 L

en
gt

h(
A

ve
ra

ge
of

 2
0

tim
es

)

ModFuzzy(m5533x)
NonH-Q
NonMod
CrispMod(c5555x)

Fig. 11. Simulation Results

where g is the position of the prey agent, h is the position of the hunter agent, and b is the
parameter of consequent part of the fuzzy rule. The fuzzy set A is constructed by
combining the crisp sets of own agent position and prey agent position with the fuzzy sets
of the other two hunter agent positions defined by partitioning the grid into 33 as shown
in Fig.9. The number of rules in upper layer is much smaller than the others, i.e.
(25*25*9*9)*3=151,875.
I perform the simulation 20 times for each method. The number of trials in the simulation
are 20,000. The results are shown in Fig.11. The depicted data is averaged value of 20 series
after averaging each sequential 100 trials. The results by the modular fuzzy model(depicted
as ModFuzzy) show the best performance compared with the other methods. Both the
learning speed and the precision of learning are desirable. Furthermore required memory
amount is much smaller than the other methods. The results by “crisp” modular
model(depicted as CrispMod) show also good performance. The complete expression
model(depicted as NonMod) cannot acquire rules efficiently and the performance is
deteriorated over time. This seems to be caused by the sparsity of model expression. The
simple Q-Learning agent (NonH-Q) is not so bad unexpectedly in the small 55 grid world.
The strategy only to approach to the prey agent acquired by the simple non-hierarchical Q-
Learning might be reasonable in such small world. However, as the knowlede about
surrounding task cannot be learned at all in such model expression, successful surrounding
completely depends upon accidental behavior of the prey agent.

5.2 Detailed results by proposed model
In order to construct the modular fuzzy model, the important issue is to decide the
dimension of projection in rule modules. Furthermore the number of partition should be
also decided appropriately. In the pursuit problem, as the positions of own agent and the
prey agent are indispensable by nature, the issue is restricted to decide the number of the
other hunter agents included in model expression and the number of partition, i.e. crisp or
fuzzy. In this study, the projection is extended step by step through modeling(reinforcement
learning) from one other hunter agent added. The number of partition for each position is

www.intechopen.com

New Advances in Machine Learning148

changed as well as the dimension. The results are summarized in Table 1. In this Table,
averaged value, standard deviation, and standard error of episode lengh average of last 100
trials in 20 times simulation are shown as well as the number of partition and the number of

Notes of Model ID: m5533x
The number of partition: Target, Own, Other1, Other 2, Other3

m : modular fuzzy model 3 : fuzzy partition
c : crisp modular model 5 : crisp partition
u : usual memory type x : void (not used in model)

Target Own Other1 Other2 Other3 Average Standard Deviation Standard Error
m333xx 9 9 9 2,187 225.77 310.71 69.48
m533xx 25 9 9 6,075 142.76 68.08 15.22
m335xx 9 9 25 6,075 98.27 44.75 10.01
m353xx 9 25 9 6,075 8.25 1.70 0.38
m535xx 25 9 25 16,875 121.99 85.53 19.12
m553xx 25 25 9 16,875 5.97 0.50 0.11
m355xx 9 25 25 16,875 10.94 1.06 0.24
c555xx 25 25 25 46,875 11.30 22.20 4.96
m3355x 9 9 25 25 151,875 115.76 33.90 6.92
m5533x 25 25 9 9 151,875 5.81 0.33 0.07
c5555x 25 25 25 25 1,171,875 9.07 0.67 0.14
u55555 25 25 25 25 25 9,765,625 271.49 283.88 63.48

Episode Length of Last 100 trials (20 times)The Number of
Rules for One Agent

Model
ID

The Number of Partition of Agent Position

Notes of Model ID: m5533x
The number of partition: Target, Own, Other1, Other 2, Other3

m : modular fuzzy model 3 : fuzzy partition
c : crisp modular model 5 : crisp partition
u : usual memory type x : void (not used in model)

Target Own Other1 Other2 Other3 Average Standard Deviation Standard Error
m333xx 9 9 9 2,187 225.77 310.71 69.48
m533xx 25 9 9 6,075 142.76 68.08 15.22
m335xx 9 9 25 6,075 98.27 44.75 10.01
m353xx 9 25 9 6,075 8.25 1.70 0.38
m535xx 25 9 25 16,875 121.99 85.53 19.12
m553xx 25 25 9 16,875 5.97 0.50 0.11
m355xx 9 25 25 16,875 10.94 1.06 0.24
c555xx 25 25 25 46,875 11.30 22.20 4.96
m3355x 9 9 25 25 151,875 115.76 33.90 6.92
m5533x 25 25 9 9 151,875 5.81 0.33 0.07
c5555x 25 25 25 25 1,171,875 9.07 0.67 0.14
u55555 25 25 25 25 25 9,765,625 271.49 283.88 63.48

Episode Length of Last 100 trials (20 times)The Number of
Rules for One Agent

Model
ID

The Number of Partition of Agent Position

Table 1. Detailed Results of Modular Model

0

2

4

6

8

10

12

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

The number of Trials(x100, Averaged)

Ep
iso

de
 L

en
gt

h
w

ith
 S

D

m5533x

c5555x

0

2

4

6

8

10

12

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

The number of Trials(x100, Averaged)

Ep
iso

de
 L

en
gt

h
w

ith
 S

D

m5533x

c5555x

Fig. 12. Comparison of Modular Fuzzy Model and Crisp Modular Model

rules corresponding to the model. From the results of first four models, own position of the
agent might be partitioned by crisp sets, i.e. m353xx. From further results of next four
models, own position of the agent and position of the target, i.e. prey agent, might be
partitioned by crisp sets, i.e. m553xx. From these obserbations, the model construction is
heuristically performed as shown in the last four results in the Table. From the results
m5533x model has best performance among the models. Compared results with good

model(c5555x) are shown in Fig.12. The significance of the m5533x model performance
compared with the other good model performance is also investigated by the t test. The
result compared with m553xx model is that null hypothesis, i.e. the means do not differ, is
rejected with statistical significance level of 0.01. As the results compared with the other
model are obvious, the description is omitted.
The results by the proposed model are considered that the learned agent can perform
surroundig task within six times movement against almost all behavior pattern of the prey
agent. This level cannot be attained without collaborative behavior of the learned agent. In
addition to its drastically improved learning speed, it can be said that the precision level of
learning is sufficient compared with the conventional techniques.

6. Conclusion

In this chapter, I focused on the pursuit problem and proposed a hierarchical modular
reinforcement learning that Profit Sharing learning algorithm is combined with Q Learning
reinforcement learning algorithm hierarchically in multi-agent environment. As the model
structure for such huge problem, I proposed a modular fuzzy model extending SIRMs
architecture. Through numerical experiments, I showed the effectiveness of the proposed
algorithm compared with the conventional algorithms. My future plan concerning with the
proposed methods includes application of another multi-agent problem or complex task
problem.

7. References

Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning, MIT Press
Watkins, C. J. & Dayan Y. (1988). Technical Note: Q-Leaning, Machine Learning, Vol.8, pp.58-

68
Grefenstette, J. J. (1988). Credit Assignment in Rule Discovery Systems Based on Genetic

Algorithms, Machine Learning, Vol.3, pp.225-245
Miyazaki. K.; Kimura. H. & Kobayashi. S. (1999). Theory and Application of Reinforcement

Learning Based on Profit Sharing, Journal of JSAI, Vol.14, No.5, pp. 800-807
Miyazaki. S.; Arai. S. & Kobayashi. S. (1999). A Theory of Profit Sharing in Multi-agent

Reinforcement Learning, Journal of JSAI, Vol. 14, No.6, pp.1156-1164
Benda. M.; Jagannathan. V. & Dodhiawalla. R. (1985). On Optimal Cooperation of

Knowledge Sources, Technical Report, BCS-G2010-28, Boeing AI Center
Ito. A. & Kanabuchi. M. (2001). Speeding up Multi-Agent Reinforcement Learning by

Coarse-Graining of Perception –Hunter Game as an Example-, Transaction of IEICE,
Vol.J84-D-1, No.3, pp.285-293

Takahashi. Y. & Asada. M. (1999). Behavior Acquisition by Multi-Layered Reinforcement
Learning, Proceedings of the 1999 IEEE International Conference on Systems, Man, and
Cybernetics., pp.716-721

Morimoto. J. & Doya. K. (2000). Acquisition of Stand-up Behavior by a Real Robot using
Hierarchical Reinforcement Learning, Proceedings of International Conference on
Machine Learning, pp. 623-630

www.intechopen.com

Hierarchical Reinforcement Learning Using a Modular Fuzzy Model for Multi-Agent Problem 149

changed as well as the dimension. The results are summarized in Table 1. In this Table,
averaged value, standard deviation, and standard error of episode lengh average of last 100
trials in 20 times simulation are shown as well as the number of partition and the number of

Notes of Model ID: m5533x
The number of partition: Target, Own, Other1, Other 2, Other3

m : modular fuzzy model 3 : fuzzy partition
c : crisp modular model 5 : crisp partition
u : usual memory type x : void (not used in model)

Target Own Other1 Other2 Other3 Average Standard Deviation Standard Error
m333xx 9 9 9 2,187 225.77 310.71 69.48
m533xx 25 9 9 6,075 142.76 68.08 15.22
m335xx 9 9 25 6,075 98.27 44.75 10.01
m353xx 9 25 9 6,075 8.25 1.70 0.38
m535xx 25 9 25 16,875 121.99 85.53 19.12
m553xx 25 25 9 16,875 5.97 0.50 0.11
m355xx 9 25 25 16,875 10.94 1.06 0.24
c555xx 25 25 25 46,875 11.30 22.20 4.96
m3355x 9 9 25 25 151,875 115.76 33.90 6.92
m5533x 25 25 9 9 151,875 5.81 0.33 0.07
c5555x 25 25 25 25 1,171,875 9.07 0.67 0.14
u55555 25 25 25 25 25 9,765,625 271.49 283.88 63.48

Episode Length of Last 100 trials (20 times)The Number of
Rules for One Agent

Model
ID

The Number of Partition of Agent Position

Notes of Model ID: m5533x
The number of partition: Target, Own, Other1, Other 2, Other3

m : modular fuzzy model 3 : fuzzy partition
c : crisp modular model 5 : crisp partition
u : usual memory type x : void (not used in model)

Target Own Other1 Other2 Other3 Average Standard Deviation Standard Error
m333xx 9 9 9 2,187 225.77 310.71 69.48
m533xx 25 9 9 6,075 142.76 68.08 15.22
m335xx 9 9 25 6,075 98.27 44.75 10.01
m353xx 9 25 9 6,075 8.25 1.70 0.38
m535xx 25 9 25 16,875 121.99 85.53 19.12
m553xx 25 25 9 16,875 5.97 0.50 0.11
m355xx 9 25 25 16,875 10.94 1.06 0.24
c555xx 25 25 25 46,875 11.30 22.20 4.96
m3355x 9 9 25 25 151,875 115.76 33.90 6.92
m5533x 25 25 9 9 151,875 5.81 0.33 0.07
c5555x 25 25 25 25 1,171,875 9.07 0.67 0.14
u55555 25 25 25 25 25 9,765,625 271.49 283.88 63.48

Episode Length of Last 100 trials (20 times)The Number of
Rules for One Agent

Model
ID

The Number of Partition of Agent Position

Table 1. Detailed Results of Modular Model

0

2

4

6

8

10

12

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

The number of Trials(x100, Averaged)

Ep
iso

de
 L

en
gt

h
w

ith
 S

D

m5533x

c5555x

0

2

4

6

8

10

12

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

The number of Trials(x100, Averaged)

Ep
iso

de
 L

en
gt

h
w

ith
 S

D

m5533x

c5555x

Fig. 12. Comparison of Modular Fuzzy Model and Crisp Modular Model

rules corresponding to the model. From the results of first four models, own position of the
agent might be partitioned by crisp sets, i.e. m353xx. From further results of next four
models, own position of the agent and position of the target, i.e. prey agent, might be
partitioned by crisp sets, i.e. m553xx. From these obserbations, the model construction is
heuristically performed as shown in the last four results in the Table. From the results
m5533x model has best performance among the models. Compared results with good

model(c5555x) are shown in Fig.12. The significance of the m5533x model performance
compared with the other good model performance is also investigated by the t test. The
result compared with m553xx model is that null hypothesis, i.e. the means do not differ, is
rejected with statistical significance level of 0.01. As the results compared with the other
model are obvious, the description is omitted.
The results by the proposed model are considered that the learned agent can perform
surroundig task within six times movement against almost all behavior pattern of the prey
agent. This level cannot be attained without collaborative behavior of the learned agent. In
addition to its drastically improved learning speed, it can be said that the precision level of
learning is sufficient compared with the conventional techniques.

6. Conclusion

In this chapter, I focused on the pursuit problem and proposed a hierarchical modular
reinforcement learning that Profit Sharing learning algorithm is combined with Q Learning
reinforcement learning algorithm hierarchically in multi-agent environment. As the model
structure for such huge problem, I proposed a modular fuzzy model extending SIRMs
architecture. Through numerical experiments, I showed the effectiveness of the proposed
algorithm compared with the conventional algorithms. My future plan concerning with the
proposed methods includes application of another multi-agent problem or complex task
problem.

7. References

Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning, MIT Press
Watkins, C. J. & Dayan Y. (1988). Technical Note: Q-Leaning, Machine Learning, Vol.8, pp.58-

68
Grefenstette, J. J. (1988). Credit Assignment in Rule Discovery Systems Based on Genetic

Algorithms, Machine Learning, Vol.3, pp.225-245
Miyazaki. K.; Kimura. H. & Kobayashi. S. (1999). Theory and Application of Reinforcement

Learning Based on Profit Sharing, Journal of JSAI, Vol.14, No.5, pp. 800-807
Miyazaki. S.; Arai. S. & Kobayashi. S. (1999). A Theory of Profit Sharing in Multi-agent

Reinforcement Learning, Journal of JSAI, Vol. 14, No.6, pp.1156-1164
Benda. M.; Jagannathan. V. & Dodhiawalla. R. (1985). On Optimal Cooperation of

Knowledge Sources, Technical Report, BCS-G2010-28, Boeing AI Center
Ito. A. & Kanabuchi. M. (2001). Speeding up Multi-Agent Reinforcement Learning by

Coarse-Graining of Perception –Hunter Game as an Example-, Transaction of IEICE,
Vol.J84-D-1, No.3, pp.285-293

Takahashi. Y. & Asada. M. (1999). Behavior Acquisition by Multi-Layered Reinforcement
Learning, Proceedings of the 1999 IEEE International Conference on Systems, Man, and
Cybernetics., pp.716-721

Morimoto. J. & Doya. K. (2000). Acquisition of Stand-up Behavior by a Real Robot using
Hierarchical Reinforcement Learning, Proceedings of International Conference on
Machine Learning, pp. 623-630

www.intechopen.com

New Advances in Machine Learning150

Ono. N. & Fukumoto. K. (1996). Multi-agent Reinforcement Learning: A Modular Approach,
Proceedings 2nd International Conference on Multi-agent Systems, pp.252-258, AAAI
Press

Fujita. K. & Matsuno. H. (2005). Multi-agent Reinforcement Learning with the Partly High-
Dimensional State Space, Transaction of IEICE, Vol.J88-D-1, No.4, pp.864-872

Murano. H. & Kitamura. S. (1997). Q-Learning with Adaptive State Segmentation(QLASS),
Proceedings of IEEE International Symposium on Computational Intelligence in Robotics
and Automation, pp.179-184

Hamagami. T.; Koakutsu. S. & Hirata. H. (2003). An Adjustment Method of the Number of
States on Q-Learning Segmenting State Space Adaptively, Transaction of IEICE, Vol.
J86-D1, No.7, pp.490-499

Seki. H.; Ishii. H. & Mizumoto. M. (2006). On the Generalization of Single Input Rule
Modules Connected Type Fuzzy Reasoning Method, Proceedings of the
SCIS&ISIS2006, pp.30-34

Yubazaki. N.; Yi. J.; Otani. M. & Hirota. K. (1997). SIRMs Dynamically Connected Fuzzy
Inference Model and Its Applications, Proceedings of IFSA’97, vol.3, pp.410-415

Takahashi. Y. & Watanabe. T. (2006). Learning of Agent Behavior Based on Hierarchical
Modular Reinforcement Learning, Proceedings of the SCIS&ISIS2006, pp.90-94

Ichihashi. H. & Watanabe. T. (1990). Learning Control System by a Simplified Fuzzy
Reasoning Model, Proceedings of the 3rd International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems, pp.417-419

Takagi. T. & Sugeno. M. (1985). Fuzzy Identification of Systems and Its Applications to
Modeling and Control, IEEE Transaction on Systems, Man, and Cybernetics, Vol. 15,
pp. 116-132

Auda. G. & Kamel. M. (1999). Modular Neural Networks: A Survey, International Journal of
Neural Systems, Vol.9, No.2, pp.129-151

www.intechopen.com

New Advances in Machine Learning

Edited by Yagang Zhang

ISBN 978-953-307-034-6

Hard cover, 366 pages

Publisher InTech

Published online 01, February, 2010

Published in print edition February, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The purpose of this book is to provide an up-to-date and systematical introduction to the principles and

algorithms of machine learning. The definition of learning is broad enough to include most tasks that we

commonly call “learning” tasks, as we use the word in daily life. It is also broad enough to encompass

computers that improve from experience in quite straightforward ways. The book will be of interest to industrial

engineers and scientists as well as academics who wish to pursue machine learning. The book is intended for

both graduate and postgraduate students in fields such as computer science, cybernetics, system sciences,

engineering, statistics, and social sciences, and as a reference for software professionals and practitioners.

The wide scope of the book provides a good introduction to many approaches of machine learning, and it is

also the source of useful bibliographical information.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Toshihiko Watanabe (2010). Hierarchical Reinforcement Learning Using a Modular Fuzzy Model for Multi-

Agent Problem, New Advances in Machine Learning, Yagang Zhang (Ed.), ISBN: 978-953-307-034-6, InTech,

Available from: http://www.intechopen.com/books/new-advances-in-machine-learning/hierarchical-

reinforcement-learning-using-a-modular-fuzzy-model-for-multi-agent-problem

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

