44,912 research outputs found

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    A Model for an Intelligent Support Decision System in Aquaculture

    Get PDF
    The paper purpose an intelligent software system agents–based to support decision in aquculture and the approach of fish diagnosis with informatics methods, techniques and solutions. A major purpose is to develop new methods and techniques for quick fish diagnosis, treatment and prophyilaxis at infectious and parasite-based known disorders, that may occur at fishes raised in high density in intensive raising systems. But, the goal of this paper is to presents a model of an intelligent agents-based diagnosis method will be developed for a support decision system.support decision system, diagnosis, multi-agent system, fish diseases

    The challenge of complexity for cognitive systems

    Get PDF
    Complex cognition addresses research on (a) high-level cognitive processes – mainly problem solving, reasoning, and decision making – and their interaction with more basic processes such as perception, learning, motivation and emotion and (b) cognitive processes which take place in a complex, typically dynamic, environment. Our focus is on AI systems and cognitive models dealing with complexity and on psychological findings which can inspire or challenge cognitive systems research. In this overview we first motivate why we have to go beyond models for rather simple cognitive processes and reductionist experiments. Afterwards, we give a characterization of complexity from our perspective. We introduce the triad of cognitive science methods – analytical, empirical, and engineering methods – which in our opinion have all to be utilized to tackle complex cognition. Afterwards we highlight three aspects of complex cognition – complex problem solving, dynamic decision making, and learning of concepts, skills and strategies. We conclude with some reflections about and challenges for future research

    Toward domain-specific design environments: Some representation ideas from the telecommunications domain

    Get PDF
    ACME is an experimental environment for investigating new approaches to modeling and analysis of system requirements and designs. ACME is built on and extends object-oriented conceptual modeling techniques and knowledge representation and reasoning (KRR) tools. The most immediate intended use for ACME is to help represent, understand, and communicate system designs during the early stages of system planning and requirements engineering. While our research is ostensibly aimed at software systems in general, we are particularly motivated to make an impact in the telecommunications domain, especially in the area referred to as Intelligent Networks (IN's). IN systems contain the software to provide services to users of a telecommunications network (e.g., call processing services, information services, etc.) as well as the software that provides the internal infrastructure for providing the services (e.g., resource management, billing, etc.). The software includes not only systems developed by the network proprietors but also by a growing group of independent service software providers

    Integrating planning, execution, and learning

    Get PDF
    To achieve the goal of building an autonomous agent, the usually disjoint capabilities of planning, execution, and learning must be used together. An architecture, called MAX, within which cognitive capabilities can be purposefully and intelligently integrated is described. The architecture supports the codification of capabilities as explicit knowledge that can be reasoned about. In addition, specific problem solving, learning, and integration knowledge is developed

    The SGIA and the Common Growing Language

    Get PDF
    Human or virtual agents are presented in our lives daily. They serve our purposes and represent us in different many situations. Nowadays the number of virtual agents is increasing daily because they are cheaper, faster and more accurate than human agents. Our aim in this article is to define a new type of intelligent agent called SGIA – Self Growing Intelligent Agent and a new defining language for it. The SGIA agent is an intelligent agent with all the common agents’ characteristics and with other special one: that to learn and grow by itself in knowledge and size.Software Agent, Knowledge Management, Education Process, Language Development
    • 

    corecore