65 research outputs found

    Adaptive acoustooptic filter

    Get PDF
    A new adaptive filter utilizing acoustooptic devices in a space integrating architecture is described. Two configurations are presented; one of them, suitable for signal estimation, is shown to approximate the Wiener filter, while the other, suitable for detection, is shown to approximate the matched filter

    High accuracy computation with linear analog optical systems: a critical study

    Get PDF
    High accuracy optical processors based on the algorithm of digital multiplication by analog convolution (DMAC) are studied for ultimate performance limitations. Variations of optical processors that perform high accuracy vector-vector inner products are studied in abstract and with specific examples. It is concluded that the use of linear analog optical processors in performing digital computations with DMAC leads to impractical requirements for the accuracy of analog optical systems and the complexity of postprocessing electronics

    CALIBRATION AND PERFORMANCE EVALUATION OF MINIATURE ULTRASONIC HYDROPHONES USING TIME-DELAY SPECTROMETRY

    Get PDF

    Spaceborne synthetic-aperture imaging radars: Applications, techniques, and technology

    Get PDF
    In the last four years, the first two Earth-orbiting, space-borne, synthetic-aperture imaging radars (SAR) were successfully developed and operated. This was a major achievement in the development of spaceborne radar sensors and ground processors. The data acquired with these sensors extended the capability of Earth resources and ocean-surface observation into a new region of the electromagnetic spectrum. This paper is a review of the different aspects of spaceborne imaging radars. It includes a review of: 1) the unique characteristics of space-borne SAR systems; 2) the state of the art in spaceborne SAR hardware and SAR optical and digital processors; 3) the different data-handling techniques; and 4) the different applications of spaceborne SAR data

    An FPGA-Integrated Time-to-Digital Converter Based on a Ring Oscillator for Programmable Delay Line Resolution Measurement

    Get PDF
    We describe the architecture of a time-to-digital converter (TDC), specially intended to measure the delay resolution of a programmable delay line (PDL). The configuration, which consists of a ring oscillator, a frequency divider (FD), and a period measurement circuit (PMC), is implemented in a field programmable gate array (FPGA) device. The ring oscillator realized in loop containing a PDL and a look-up table (LUT) generates periodic oscillatory pulses. The FD amplifies the oscillatory period from nanosecond range to microsecond range. The time-to-digital conversion is based on counting the number of clock cycles between two consecutive pulses of the FD by the PMC. Experiments have been conducted to verify the performance of the TDC. The achieved relative errors for four PDLs are within 0.50%-1.21% and the TDC has an equivalent resolution of about 0.4 ps

    UHF Antenna Design for AFIT Random Noise Radar

    Get PDF
    The design of a small ultra-high frequency (UHF) antenna for an ultra-wideband (UWB) random noise radar (RNR) system was undertaken to improve system bandwidth and reduce overall system size. The Vivaldi dipole antenna class showed the greatest potential for high performance in this specific application. After extensive computer simulation, three designs were built using two printed circuit board antenna construction methods. The antipodal chopped Vivaldi dipole antenna, built with a milling machine, achieved a wider bandwidth and more uniform spectral performance characteristics. Though current results show improvement over the current log-periodic antenna (LPA) used on the system, greater performance could possibly be achieved with higher fidelity construction methods. The chopped Vivaldi dipole antenna can be classified as a highly efficient, electrically small antenna optimized for UWB applications, due to the combination of small size as well as a nearly uniform frequency response and low dispersion in the UHF bandwidth. Though designed for AFIT\u27s Noise Network (NoNET) system, a UHF UWB RNR, the antenna could be applied to a variety of UHF systems looking to optimize the trade-off between size and power budgets

    Time-frequency, bi-frequency detector analysis of noise technology radar

    Get PDF
    Enemy integrated air defense systems (IADS) using low probability of intercept (LPI) emitters can cause significant problems for suppression of enemy air defense (SEAD) techniques. New threat emitter configurations using low-power random noise modulation have a significant processing gain unavailable to non-cooperative intercept receivers. Consequently, the detection of these emitters can not be accomplished with conventional intercept receiver detection methods. This thesis examines the use of time-frequency, bi-frequency signal detection techniques to identify the parameters of the four types of continuous waveform noise radar recently reported. These include: (a) random noise, (b) noise plus frequency modulation continuous wave (FMCW), (c) noise FMCW plus sine and (d) random binary phase modulation. Quadrature mirror filtering for wavelet decomposition is used to investigate the four types of noise signals in order to extract the signal parameters. The FFT accumulation method for estimating the spectral correlation density function is also used to examine the cyclostationary bi-frequency properties of the waveforms. In addition, the periodic autocorrelation function and periodic ambiguity function are studied to determine the waveform properties in the delay- Doppler offset domain. Results show that non-cooperative intercept receivers can increase their processing gain using these types of signal processing techniques providing a more efficient response time to the threat.http://archive.org/details/timefrequencybif10945263

    Spaceborne synthetic-aperture imaging radars: Applications, techniques, and technology

    Get PDF
    In the last four years, the first two Earth-orbiting, space-borne, synthetic-aperture imaging radars (SAR) were successfully developed and operated. This was a major achievement in the development of spaceborne radar sensors and ground processors. The data acquired with these sensors extended the capability of Earth resources and ocean-surface observation into a new region of the electromagnetic spectrum. This paper is a review of the different aspects of spaceborne imaging radars. It includes a review of: 1) the unique characteristics of space-borne SAR systems; 2) the state of the art in spaceborne SAR hardware and SAR optical and digital processors; 3) the different data-handling techniques; and 4) the different applications of spaceborne SAR data
    • …
    corecore