2,281 research outputs found

    Imaging of Structural Timber Based on in Situ Radar and Ultrasonic Wave Measurements: A Review of the State-Of-The-Art

    Get PDF
    With the rapidly growing interest in using structural timber, a need exists to inspect and assess these structures using non-destructive testing (NDT). This review article summarizes NDT methods for wood inspection. After an overview of the most important NDT methods currently used, a detailed review of Ground Penetrating Radar (GPR) and Ultrasonic Testing (UST) is presented. These two techniques can be applied in situ and produce useful visual representations for quantitative assessments and damage detection. With its commercial availability and portability, GPR can help rapidly identify critical features such as moisture, voids, and metal connectors in wood structures. UST, which effectively detects deep cracks, delaminations, and variations in ultrasonic wave velocity related to moisture content, complements GPR’s capabilities. The non-destructive nature of both techniques preserves the structural integrity of timber, enabling thorough assessments without compromising integrity and durability. Techniques such as the Synthetic Aperture Focusing Technique (SAFT) and Total Focusing Method (TFM) allow for reconstructing images that an inspector can readily interpret for quantitative assessment. The development of new sensors, instruments, and analysis techniques has continued to improve the application of GPR and UST on wood. However, due to the hon-homogeneous anisotropic properties of this complex material, challenges remain to quantify defects and characterize inclusions reliably and accurately. By integrating advanced imaging algorithms that consider the material’s complex properties, combining measurements with simulations, and employing machine learning techniques, the implementation and application of GPR and UST imaging and damage detection for wood structures can be further advanced

    Towards a cyber physical system for personalised and automatic OSA treatment

    Get PDF
    Obstructive sleep apnea (OSA) is a breathing disorder that takes place in the course of the sleep and is produced by a complete or a partial obstruction of the upper airway that manifests itself as frequent breathing stops and starts during the sleep. The real-time evaluation of whether or not a patient is undergoing OSA episode is a very important task in medicine in many scenarios, as for example for making instantaneous pressure adjustments that should take place when Automatic Positive Airway Pressure (APAP) devices are used during the treatment of OSA. In this paper the design of a possible Cyber Physical System (CPS) suited to real-time monitoring of OSA is described, and its software architecture and possible hardware sensing components are detailed. It should be emphasized here that this paper does not deal with a full CPS, rather with a software part of it under a set of assumptions on the environment. The paper also reports some preliminary experiments about the cognitive and learning capabilities of the designed CPS involving its use on a publicly available sleep apnea database

    Reverse-Time Migration for Evaluating the Internal Structure of Tree-Trunks Using Ground-Penetrating Radar

    Get PDF
    The authors would like to express their sincere thanks and gratitude to the following trusts, charities, organizations and individuals for their generosity in supporting this project: Lord Faringdon Charitable Trust, The Schroder Foundation, Cazenove Charitable Trust, Ernest Cook, Sir Henry Keswick, Ian Bond, P. F. Charitable Trust, Prospect Investment Management Limited, The Adrian Swire Charitable Trust, The John Swire 1989 Charitable Trust, The Sackler Trust, The Tanlaw Foundation and The Wyfold Charitable Trust. This paper is dedicated to the memory of Jonathon West, a friend, a colleague, a forester, a conservationist and an environmentalist who died following an accident in the woodland that he loved.Peer reviewedPostprin

    Data-driven reconstruction methods for photoacoustic tomography:Learning structures by structured learning

    Get PDF
    Photoacoustic tomography (PAT) is an imaging technique with potential applications in various fields of biomedicine. By visualising vascular structures, PAT could help in the detection and diagnosis of diseases related to their dysregulation. In PAT, tissue is illuminated by light. After entering the tissue, the light undergoes scattering and absorption. The absorbed energy is transformed into an initial pressure by the photoacoustic effect, which travels to ultrasound detectors outside the tissue.This thesis is concerned with the inverse problem of the described physical process: what was the initial pressure in the tissue that gave rise to the detected pressure outside? The answer to this question is difficult to obtain when light penetration in tissue is not sufficient, the measurements are corrupted, or only a small number of detectors can be used in a limited geometry. For decades, the field of variational methods has come up with new approaches to solve these kind of problems. these kind of problems: the combination of new theory and clever algorithms has led to improved numerical results in many image reconstruction problems. In the past five years, previously state-of-the-art results were greatly surpassed by combining variational methods with artificial neural networks, a form of artificial intelligence.In this thesis we investigate several ways of combining data-driven artificial neural networks with model-driven variational methods. We combine the topics of photoacoustic tomography, inverse problems and artificial neural networks.Chapter 3 treats the variational problem in PAT and provides a framework in which hand-crafted regularisers can easily be compared. Both directional and higher-order total variation methods show improved results over direct methods for PAT with structures resembling vasculature.Chapter 4 provides a method to jointly solve the PAT reconstruction and segmentation problem for absorbing structures resembling vasculature. Artificial neural networks are embodied in the algorithmic structure of primal-dual methods, which are a popular way to solve variational problems. It is shown that a diverse training set is of utmost importance to solve multiple problems with one learned algorithm.Chapter 5 provides a convergence analysis for data-consistent networks, which combine classical regularisation methods with artificial neural networks. Numerical results are shown for an inverse problem that couples the Radon transform with a saturation problem for biomedical images.Chapter 6 explores the idea of fully-learned reconstruction by connecting two nonlinear autoencoders. By enforcing a dimensionality reduction in the artificial neural network, a joint manifold for measurements and images is learned. The method, coined learned SVD, provides advantages over other fully-learned methods in terms of interpretability and generalisation. Numerical results show high-quality reconstructions, even in the case where no information on the forward process is used.In this thesis, several ways of combining model-based methods with data-driven artificial neural networks were investigated. The resulting hybrid methods showed improved tomography reconstructions. By allowing data to improve a structured method, deeper vascular structures could be imaged with photoacoustic tomography.<br/

    An Integrated Petrographic, Geomatic and Geophysical Approach for the Characterization of the Carbonate Rocks of the Calcari di Cagliari Formation

    Get PDF
    Non-invasive techniques, such as close-range photogrammetry (CRP) and 3D ultrasonic tomography complemented with optical and scanning electron microscopy and mercury porosimetry, were applied to characterize the carbonate rock samples of the Calcari di Cagliari formation. The integrated approach started with the computation of high-resolution 3D models of the carbonate samples using the CRP technique to produce 3D high-resolution models texturized both with natural colors and intensity. Starting from the 3D models from previous techniques, a 3D ultrasonic tomography on each rock sample was accurately planned and carried out in order to detect the elastic properties of such rocks and relate them to textural heterogeneity or internal defects. The results indicate that the relationship between longitudinal velocity and rock properties is complex even in the same carbonate formation. Understanding the relationship between the geomatic and geophysical responses in the investigated rock properties, such as textural characteristics and especially structure and geometry of pores, type of pores, tortuosity and cementing material, is important for many practical applications and especially in the diagnostic process of the conservation state of monumental structures. The integration of the above non-invasive techniques complemented by petrographical–petrophysical data proved to be a powerful method to associate each lithotype with a different susceptibility to degradation. The results presented in this paper demonstrate that the proposed integrated use of complementary methodologies would guarantee the reproducibility of the measurements both at the laboratory and field scale for the monitoring in time of the rock condition while giving a useful contribution in making decisions on an appropriate remedial strategy
    corecore