8 research outputs found

    Resource-aware motion control:feedforward, learning, and feedback

    Get PDF
    Controllers with new sampling schemes improve motion systems’ performanc

    Multivariable Iterative Learning Control Design Procedures: from Decentralized to Centralized, Illustrated on an Industrial Printer

    Get PDF
    Iterative Learning Control (ILC) enables high control performance through learning from measured data, using only limited model knowledge in the form of a nominal parametric model. Robust stability requires robustness to modeling errors, often due to deliberate undermodeling. The aim of this paper is to develop a range of approaches for multivariable ILC, where specific attention is given to addressing interaction. The proposed methods either address the interaction in the nominal model, or as uncertainty, i.e., through robust stability. The result is a range of techniques, including the use of the structured singular value (SSV) and Gershgorin bounds, that provide a different trade-off between modeling requirements, i.e., modeling effort and cost, and achievable performance. This allows control engineers to select the approach that fits the modeling budget and control requirements. This trade-off is demonstrated in a case study on an industrial flatbed printer

    Design and Optimal Control of a Magnet Assisted Scanning Stage for Precise and Energy Efficient Positioning

    Full text link
    Scanning stages are characterized by repeated back and forth motions and are widely used in advanced manufacturing processes like photo-lithography, laser-scribing, inspection, metrology, 3D printing, and precision parts assembly, many of which are closely related to the semiconductor (i.e., integrated circuit) manufacturing industry. In order to deliver more high- performance semiconductor chips, i.e., to keep up with predictions made by Moore’s Law, the scanning stages employed by the industry need to move faster while maintaining nanometer-level precision. Achieving these two goals simultaneously requires extensive use of thermal and vibration-induced error mitigation methods, because the motors, and subsequently the surrounding stage components, become heated and flexible parts of scanning stages are easily excited by their aggressive motions (with high acceleration/deceleration). Most of the available solutions tackle the heat and vibration mitigation problems separately, even though the two problems originate from one source, i.e., the large inertial loads generated by the scanning stage’s actuators. Much benefit (e.g., size and cost reductions) can be achieved by considering the two problems simultaneously by addressing their root cause. This dissertation proposes a design-based approach to simultaneously mitigate thermal and vibration-induced errors of scanning stages. Exploiting the repeated back-and-forth motions of scanning, permanent magnet (PM) based assist devices are designed to provide assist force needed during the motion reversal portions of scanning trajectories. The PM-based assist devices store the kinetic energy of the moving table during deceleration and release the stored energy when the table accelerates. Consequently, the force requirements of the primary actuator decrease, thus lowering its heat generation due to copper (resistive) losses. Moreover, the reaction forces borne by the PM assistive devices are channeled to the ground, bypassing the vibration isolated base upon which the scanning stage rests, thus reducing unwanted vibration. To increase the force density of the PMs, a 2D Halbach arrangement is adopted in a prototype scanning stage. Moreover, an efficient and low-cost servo system, optimized for versatility, is integrated into the scanning stage for automatic positioning of the PMs. The designed magnet assisted scanning stage is an over-actuated system, meaning that it has more control inputs than outputs. For the best utilization of its actuators, a feedforward approach for optimal allocation of control efforts to its actuators is developed. The stage, controlled with the optimal feedforward control inputs, achieves significant reductions of actuator heat and vibration-induced errors when applied to typical scanning motions used in semiconductor manufacturing (silicon wafer processing). To further improve the positioning accuracy of the stage, an Iterative Learning Control (ILC) approach for over-actuated systems is developed, exploiting the repeated motion of scanning stages. The optimal ILC update law is designed, considering model and input force uncertainties, for robust monotonic convergence of tracking errors, and the resultant control force is efficiently allocated to multiple actuators. Applied to the magnet assisted scanning stage, the proposed ILC approach additionally reduces tracking errors arising from the mismatch between the model and actual system, thus significantly improving the positioning accuracy of the stage.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/149847/1/yydkyoon_1.pd

    Identification and active thermomechanical control in precision mechatronics

    Get PDF

    Achieving perfect causal feedforward control in presence of nonminimum-phase behavior - exploiting additional actuators and squaring down

    No full text
    Control performance is limited by nonminimum-phase zeros, for example through the Poisson integral in feedback control and 'unstable' poles in inverse model feedforward control. The aim of this paper is to exploit the additional freedom in overactuated systems to overcome these limitations. In particular, an approach for causal and exact inversion of nonminimum-phase systems is presented for application in inverse model feedforward control. The proposed method is based on the observation that non-square systems often have no invariant zeros. A squaring-down approach is employed to create a square system without nonminimum-phase zeros to enable direct inversion. The proposed approach is successfully demonstrated on a benchmark system. The method enables exact inversion for non-square systems without requiring preview

    Achieving perfect causal feedforward control in presence of nonminimum-phase behavior - exploiting additional actuators and squaring down

    No full text
    \u3cp\u3eControl performance is limited by nonminimum-phase zeros, for example through the Poisson integral in feedback control and 'unstable' poles in inverse model feedforward control. The aim of this paper is to exploit the additional freedom in overactuated systems to overcome these limitations. In particular, an approach for causal and exact inversion of nonminimum-phase systems is presented for application in inverse model feedforward control. The proposed method is based on the observation that non-square systems often have no invariant zeros. A squaring-down approach is employed to create a square system without nonminimum-phase zeros to enable direct inversion. The proposed approach is successfully demonstrated on a benchmark system. The method enables exact inversion for non-square systems without requiring preview.\u3c/p\u3

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore