6,562 research outputs found

    Network unfairness in dragonfly topologies

    Get PDF
    Dragonfly networks arrange network routers in a two-level hierarchy, providing a competitive cost-performance solution for large systems. Non-minimal adaptive routing (adaptive misrouting) is employed to fully exploit the path diversity and increase the performance under adversarial traffic patterns. Network fairness issues arise in the dragonfly for several combinations of traffic pattern, global misrouting and traffic prioritization policy. Such unfairness prevents a balanced use of the resources across the network nodes and degrades severely the performance of any application running on an affected node. This paper reviews the main causes behind network unfairness in dragonflies, including a new adversarial traffic pattern which can easily occur in actual systems and congests all the global output links of a single router. A solution for the observed unfairness is evaluated using age-based arbitration. Results show that age-based arbitration mitigates fairness issues, especially when using in-transit adaptive routing. However, when using source adaptive routing, the saturation of the new traffic pattern interferes with the mechanisms employed to detect remote congestion, and the problem grows with the network size. This makes source adaptive routing in dragonflies based on remote notifications prone to reduced performance, even when using age-based arbitration.Peer ReviewedPostprint (author's final draft

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version

    Energy-Efficient Resource Allocation in Wireless Networks: An Overview of Game-Theoretic Approaches

    Full text link
    An overview of game-theoretic approaches to energy-efficient resource allocation in wireless networks is presented. Focusing on multiple-access networks, it is demonstrated that game theory can be used as an effective tool to study resource allocation in wireless networks with quality-of-service (QoS) constraints. A family of non-cooperative (distributed) games is presented in which each user seeks to choose a strategy that maximizes its own utility while satisfying its QoS requirements. The utility function considered here measures the number of reliable bits that are transmitted per joule of energy consumed and, hence, is particulary suitable for energy-constrained networks. The actions available to each user in trying to maximize its own utility are at least the choice of the transmit power and, depending on the situation, the user may also be able to choose its transmission rate, modulation, packet size, multiuser receiver, multi-antenna processing algorithm, or carrier allocation strategy. The best-response strategy and Nash equilibrium for each game is presented. Using this game-theoretic framework, the effects of power control, rate control, modulation, temporal and spatial signal processing, carrier allocation strategy and delay QoS constraints on energy efficiency and network capacity are quantified.Comment: To appear in the IEEE Signal Processing Magazine: Special Issue on Resource-Constrained Signal Processing, Communications and Networking, May 200

    VLPW: The Very Long Packet Window Architecture for High Throughput Network-On-Chip Router Designs

    Get PDF
    ChipMulti-processor (CMP) architectures have become mainstream for designing processors. With a large number of cores, Network-On-Chip (NOC) provides a scalable communication method for CMPs. NOC must be carefully designed to provide low latencies and high throughput in the resource-constrained environment. To improve the network throughput, we propose the Very Long Packet Window (VLPW) architecture for the NOC router design that tries to close the throughput gap between state-of-the-art on-chip routers and the ideal interconnect fabric. To improve throughput, VLPW optimizes Switch Allocation (SA) efficiency. Existing SA normally applies Round-Robin scheduling to arbitrate among the packets targeting the same output port. However, this simple approach suffers from low arbitration efficiency and incurs low network throughput. Instead of relying solely on simple switch scheduling, the VLPW router design globally schedules all the input packets, resolves the output conflicts and achieves high throughput. With the VLPW architecture, we propose two scheduling schemes: Global Fairness and Global Diversity. Our simulation results show that the VLPW router achieves more than 20% throughput improvement without negative effects on zero-load latency

    Radio resource allocation for multicarrier-low density spreading multiple access

    Get PDF
    Multicarrier-low density spreading multiple access (MC-LDSMA) is a promising multiple access technique that enables near optimum multiuser detection. In MC-LDSMA, each user’s symbol spread on a small set of subcarriers, and each subcarrier is shared by multiple users. The unique structure of MC-LDSMA makes the radio resource allocation more challenging comparing to some well-known multiple access techniques. In this paper, we study the radio resource allocation for single-cell MC-LDSMA system. Firstly, we consider the single-user case, and derive the optimal power allocation and subcarriers partitioning schemes. Then, by capitalizing on the optimal power allocation of the Gaussian multiple access channel, we provide an optimal solution for MC-LDSMA that maximizes the users’ weighted sum-rate under relaxed constraints. Due to the prohibitive complexity of the optimal solution, suboptimal algorithms are proposed based on the guidelines inferred by the optimal solution. The performance of the proposed algorithms and the effect of subcarrier loading and spreading are evaluated through Monte Carlo simulations. Numerical results show that the proposed algorithms significantly outperform conventional static resource allocation, and MC-LDSMA can improve the system performance in terms of spectral efficiency and fairness in comparison with OFDMA

    Throughput Unfairness in Dragonfly Networks under Realistic Traffic Patterns

    Get PDF
    Dragonfly networks have a two-level hierarchical arrangement of the network routers, and allow for a competitive cost-performance solution in large systems. Nonminimal adaptive routing is employed to fully exploit the path diversity and increase the performance under adversarial traffic patterns. Throughput unfairness prevents a balanced use of the resources across the network nodes and degrades severely the performance of any application running on an affected node. Previous works have demonstrated the presence of throughput unfairness in Dragonflies under certain adversarial traffic patterns, and proposed different alternatives to effectively combat such effect. In this paper we introduce a new traffic pattern denoted adversarial consecutive (ADVc), which portrays a real use case, and evaluate its impact on network performance and throughput fairness. This traffic pattern is the most adversarial in terms of network fairness. Our evaluations, both with or without transit-over-injection priority, show that global misrouting policies do not properly alleviate this problem. Therefore, explicit fairness mechanisms are required for these networks
    • …
    corecore