6,069 research outputs found

    A Practical Searchable Symmetric Encryption Scheme for Smart Grid Data

    Full text link
    Outsourcing data storage to the remote cloud can be an economical solution to enhance data management in the smart grid ecosystem. To protect the privacy of data, the utility company may choose to encrypt the data before uploading them to the cloud. However, while encryption provides confidentiality to data, it also sacrifices the data owners' ability to query a special segment in their data. Searchable symmetric encryption is a technology that enables users to store documents in ciphertext form while keeping the functionality to search keywords in the documents. However, most state-of-the-art SSE algorithms are only focusing on general document storage, which may become unsuitable for smart grid applications. In this paper, we propose a simple, practical SSE scheme that aims to protect the privacy of data generated in the smart grid. Our scheme achieves high space complexity with small information disclosure that was acceptable for practical smart grid application. We also implement a prototype over the statistical data of advanced meter infrastructure to show the effectiveness of our approach

    Split keyword fuzzy and synonym search over encrypted cloud data

    Get PDF
    A substitute solution for various organizations of data owners to store their data in the cloud using storage as a service(SaaS). The outsourced sensitive data is encrypted before uploading into the cloud to achieve data privacy. The encrypted data is search based on keywords and retrieve interested files by data user using a lot of traditional Search scheme. Existing search schemes supports exact keyword match or fuzzy keyword search, but synonym based multi-keyword search are not supported. In the real world scenario, cloud users may not know the exact keyword for searching and they might give synonym of the keyword as the input for search instead of exact or fuzzy keyword due to lack of appropriate knowledge of data. In this paper, we describe an efficient search approach for encrypted data called as Split Keyword Fuzzy and Synonym Search (SKFS). Multi-keyword ranked search with accurate keyword and Fuzzy search supports synonym queries are a major contribution of SKFS. The wildcard Technique is used to store the keywords securely within the index tree. Index tree helps to search faster, accurate and low storage cost. Extensive experimental results on real-time data sets shows, the proposed solution is effective and efficient for multi-keyword ranked search and synonym queries Fuzzy based search over encrypted cloud data. © 2017 Springer Science+Business Media, LL

    Forward Private Searchable Symmetric Encryption with Optimized I/O Efficiency

    Get PDF
    Recently, several practical attacks raised serious concerns over the security of searchable encryption. The attacks have brought emphasis on forward privacy, which is the key concept behind solutions to the adaptive leakage-exploiting attacks, and will very likely to become mandatory in the design of new searchable encryption schemes. For a long time, forward privacy implies inefficiency and thus most existing searchable encryption schemes do not support it. Very recently, Bost (CCS 2016) showed that forward privacy can be obtained without inducing a large communication overhead. However, Bost's scheme is constructed with a relatively inefficient public key cryptographic primitive, and has a poor I/O performance. Both of the deficiencies significantly hinder the practical efficiency of the scheme, and prevent it from scaling to large data settings. To address the problems, we first present FAST, which achieves forward privacy and the same communication efficiency as Bost's scheme, but uses only symmetric cryptographic primitives. We then present FASTIO, which retains all good properties of FAST, and further improves I/O efficiency. We implemented the two schemes and compared their performance with Bost's scheme. The experiment results show that both our schemes are highly efficient, and FASTIO achieves a much better scalability due to its optimized I/O
    • …
    corecore