4 research outputs found

    Counterfactual Fairness with Disentangled Causal Effect Variational Autoencoder

    Full text link
    The problem of fair classification can be mollified if we develop a method to remove the embedded sensitive information from the classification features. This line of separating the sensitive information is developed through the causal inference, and the causal inference enables the counterfactual generations to contrast the what-if case of the opposite sensitive attribute. Along with this separation with the causality, a frequent assumption in the deep latent causal model defines a single latent variable to absorb the entire exogenous uncertainty of the causal graph. However, we claim that such structure cannot distinguish the 1) information caused by the intervention (i.e., sensitive variable) and 2) information correlated with the intervention from the data. Therefore, this paper proposes Disentangled Causal Effect Variational Autoencoder (DCEVAE) to resolve this limitation by disentangling the exogenous uncertainty into two latent variables: either 1) independent to interventions or 2) correlated to interventions without causality. Particularly, our disentangling approach preserves the latent variable correlated to interventions in generating counterfactual examples. We show that our method estimates the total effect and the counterfactual effect without a complete causal graph. By adding a fairness regularization, DCEVAE generates a counterfactual fair dataset while losing less original information. Also, DCEVAE generates natural counterfactual images by only flipping sensitive information. Additionally, we theoretically show the differences in the covariance structures of DCEVAE and prior works from the perspective of the latent disentanglement

    Causally Disentangled Generative Variational AutoEncoder

    Full text link
    We present a new supervised learning technique for the Variational AutoEncoder (VAE) that allows it to learn a causally disentangled representation and generate causally disentangled outcomes simultaneously. We call this approach Causally Disentangled Generation (CDG). CDG is a generative model that accurately decodes an output based on a causally disentangled representation. Our research demonstrates that adding supervised regularization to the encoder alone is insufficient for achieving a generative model with CDG, even for a simple task. Therefore, we explore the necessary and sufficient conditions for achieving CDG within a specific model. Additionally, we introduce a universal metric for evaluating the causal disentanglement of a generative model. Empirical results from both image and tabular datasets support our findings

    Achieving Differential Privacy and Fairness in Machine Learning

    Get PDF
    Machine learning algorithms are used to make decisions in various applications, such as recruiting, lending and policing. These algorithms rely on large amounts of sensitive individual information to work properly. Hence, there are sociological concerns about machine learning algorithms on matters like privacy and fairness. Currently, many studies only focus on protecting individual privacy or ensuring fairness of algorithms separately without taking consideration of their connection. However, there are new challenges arising in privacy preserving and fairness-aware machine learning. On one hand, there is fairness within the private model, i.e., how to meet both privacy and fairness requirements simultaneously in machine learning algorithms. On the other hand, there is fairness between the private model and the non-private model, i.e., how to ensure the utility loss due to differential privacy is the same towards each group. The goal of this dissertation is to address challenging issues in privacy preserving and fairness-aware machine learning: achieving differential privacy with satisfactory utility and efficiency in complex and emerging tasks, using generative models to generate fair data and to assist fair classification, achieving both differential privacy and fairness simultaneously within the same model, and achieving equal utility loss w.r.t. each group between the private model and the non-private model. In this dissertation, we develop the following algorithms to address the above challenges. (1) We develop PrivPC and DPNE algorithms to achieve differential privacy in complex and emerging tasks of causal graph discovery and network embedding, respectively. (2) We develop the fair generative adversarial neural networks framework and three algorithms (FairGAN, FairGAN+ and CFGAN) to achieve fair data generation and classification through generative models based on different association-based and causation-based fairness notions. (3) We develop PFLR and PFLR* algorithms to simultaneously achieve both differential privacy and fairness in logistic regression. (4) We develop a DPSGD-F algorithm to remove the disparate impact of differential privacy on model accuracy w.r.t. each group
    corecore