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ABSTRACT

Machine learning algorithms are used to make decisions in various applications, such

as recruiting, lending and policing. These algorithms rely on large amounts of sensitive indi-

vidual information to work properly. Hence, there are sociological concerns about machine

learning algorithms on matters like privacy and fairness. Currently, many studies only focus

on protecting individual privacy or ensuring fairness of algorithms separately without tak-

ing consideration of their connection. However, there are new challenges arising in privacy

preserving and fairness-aware machine learning. On one hand, there is fairness within the

private model, i.e., how to meet both privacy and fairness requirements simultaneously in

machine learning algorithms. On the other hand, there is fairness between the private model

and the non-private model, i.e., how to ensure the utility loss due to differential privacy is

the same towards each group.

The goal of this dissertation is to address challenging issues in privacy preserving

and fairness-aware machine learning: achieving differential privacy with satisfactory utility

and efficiency in complex and emerging tasks, using generative models to generate fair data

and to assist fair classification, achieving both differential privacy and fairness simultaneously

within the same model, and achieving equal utility loss w.r.t. each group between the private

model and the non-private model.

In this dissertation, we develop the following algorithms to address the above chal-

lenges.

1. We develop PrivPC and DPNE algorithms to achieve differential privacy in complex

and emerging tasks of causal graph discovery and network embedding, respectively.

2. We develop the fair generative adversarial neural networks framework and three algo-



rithms (FairGAN, FairGAN+ and CFGAN) to achieve fair data generation and classi-

fication through generative models based on different association-based and causation-

based fairness notions.

3. We develop PFLR and PFLR* algorithms to simultaneously achieve both differential

privacy and fairness in logistic regression.

4. We develop a DPSGD-F algorithm to remove the disparate impact of differential pri-

vacy on model accuracy w.r.t. each group.
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1 Introduction

1.1 Motivation

Nowadays, machine learning algorithms are being widely used to automatically make

decisions, such as loan application and student admission, based on our individual informa-

tion. It is important to address individuals’ sociological concerns such as privacy and fairness

and meet government laws and regulations (e.g., General Data Protection and Regulation

on data protection and privacy, and Fair Credit Reporting Act or Equal Credit Opportunity

Act on fairness) in training and deploying machine learning algorithms.

Differential privacy is a formal standard for protecting individual privacy in data

analysis [1]. It has been established as a standard privacy model to achieve opt-out right

of individuals. Generally speaking, differential privacy guarantees the query results or the

released model cannot be exploited by attackers to derive whether one particular record is

present or absent in the underlining dataset. It ensures that the inclusion or exclusion of a

single record from a dataset makes no statistical difference when we perform a data analysis

task on the dataset. The mechanisms to achieve differential privacy mainly include the classic

approach of adding Laplacian noise [1], the exponential mechanism [2], the objective pertur-

bation approach [3], the functional perturbation approach [4], and the sample and aggregate

framework [5]. There have been many studies on the application of differential privacy in

some particular analysis tasks, e.g. data collection [6, 7], stochastic gradient descents [8],

regression [9], spectral graph analysis [10], and deep learning models[11, 12]. There are still

many complex and emerging tasks under-exploited on how to achieve differential privacy

with satisfactory utility and efficiency, e.g., causal graph discovery and network embedding.
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Fairness-aware learning is increasingly receiving attention in the machine learning

field. Discrimination indicates unfair treatment towards individuals based on the group to

which they are perceived to belong. In machine learning, discrimination may be unintentional

but have powerful effect on vulnerable groups. There are two major tasks in fairness-aware

machine learning: (1) detecting and removing discrimination from datasets and (2) building

models that make fair predictions. The first task is important for data owners to release

data for various purposes, including scientific data analysis and training machine learning

models. For the second task, when building machine learning models, if there exist historical

biased decisions against the protected group in the training data, models learned from such

data may also make discriminative predictions against the protected group [13, 14, 15]. In

addition, the learning process can also introduce biases into predicted decisions [16]. Current

research to achieve fair classification can be mainly categorized into two groups: in-processing

methods which incorporate fairness constraints into the classification models [17, 18], and

pre/post-processing methods which modify the training data and/or the potentially unfair

predictions made by the classifiers [19, 20, 21, 22, 23]. There is lack of study on how to use

generative models to generate fair data and to assist fair classification.

Currently, many studies only focus on protecting individual privacy or ensuring fair-

ness of algorithms separately without taking consideration of their connection. However,

there are new challenges arising in privacy preserving and fairness-aware machine learning.

On one hand, there is fairness within the private model, i.e., how to meet both privacy and

fairness requirements simultaneously in the same machine learning algorithms. Currently,

many studies focus on only protecting individual privacy or ensuring fairness of algorithms.

However, how to meet both privacy and fairness requirements simultaneously in machine

learning algorithms is under exploited. On the other hand, there may exist fairness in terms
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of utility loss between the private model and the non-private model, i.e., how to ensure the

utility loss due to differential privacy is fair towards each group. When we enforce differential

privacy in machine learning, the utility-privacy trade-off is different w.r.t. each group. Gradi-

ent clipping and random noise addition disproportionately affect underrepresented and more

complex classes and subgroups, which results in inequality in utility loss. The inequality in

utility loss by differential privacy needs to be analyzed and mitigated.

1.2 Overview

The goal of this dissertation is to address challenging issues in privacy preserving and

fairness-aware machine learning.

First, we focus on causal graph discovery and network embedding, two complex and

emerging tasks, and explore how to use different privacy preserving mechanisms to achieve

differential privacy in these two tasks. For causal graph discovery, discovering causal rela-

tionships by constructing the causal graph provides critical information to researchers and

decision makers. Yet releasing causal graphs may risk individual participant’s privacy. It is

very under-exploit how to enforce privacy preservation in causal graph discovery. For net-

work embedding, learning the low-dimensional representations of the vertices in a network

can help users understand the network structure and perform other data mining tasks effi-

ciently. Various network embedding approaches such as DeepWalk [24] and LINE [25] have

been developed recently. However, how to protect the individual privacy in network embed-

ding has not been exploited. It is challenging to achieve high utility as the sensitivity of

stochastic gradients in random walks and that of edge sampling are very high. We compare

a variety of mechanisms and propose efficient novel private algorithms to perform causal

graph discovery (Chapter 4) and network embedding (Chapter 5) with privacy guarantee.
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Second, we explore how to use generative models to generate fair data and to assist

fair classification. How to achieve fairness is important for machine learning. Two tasks that

are equally important in fair machine learning are how to obtain fair datasets and how to

build fair classifiers. Instead of removing the discrimination from the existing dataset, we

focus on generating fair data. Generative adversarial networks [26] can generate high quality

synthetic data that are indistinguishable from real data. However, the generated data can

inherit the historical bias from the real data. We study different kinds of fairness notions:

statistical parity [27] and ε-fairness [14] in fair data generation; demographic parity, equality

of opportunity and equality of odds [16] in fair classification. Meanwhile, recent researches

[28, 29, 30, 31, 32, 33] showed that fairness should be studied from the causal perspective, and

proposed a number of fairness criteria based on Pearl’s causal modeling framework [34]. We

also study fairness notions based on total effect, path-specific effect, and counterfactual effect

in causation-based fair data. We investigate the problem of building fairness-aware generative

adversarial networks, which can learn a close distribution from a given dataset while also

ensuring fairness in data generation and classification based on different association-based

(Chapter 6) or causation-based (Chapter 7) fairness notions.

Last but not least, we address the new challenges arising in privacy preserving and

fairness-aware machine learning by examining the relationship between their definitions and

mechanisms to achieve them and their trade-offs. When we enforce differential privacy onto

a regular non-private model, the model trades some utility off for privacy. On one hand, with

the impact of differential privacy, the within-model unfairness in the private model may be

different from the one in the non-private model. Using logistic regression as an example,

we study how to simultaneously achieve both differential privacy and fairness within the

same model (Chapter 8). On the other hand, differential privacy may introduce additional
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discriminative effect towards the protected group when we compare the private model with

the non-private model. The utility loss between the private and non-private models w.r.t.

each group, such as reduction in group accuracy, may be uneven. We study the inequality

in utility loss due to differential privacy w.r.t. groups and compare the change in prediction

accuracy w.r.t. each group between the private model and the non-private model (Chapter 9).

The remainder of this dissertation is organized as follows. In Chapter 2, we discuss

related work in differential privacy and fairness-aware machine learning to provide a general

review of research achievements in this research field. We introduce the preliminary back-

ground for differential privacy and fairness-aware machine learning in Chapter 3. The extra

highly related work and preliminary are given at the beginning of each research chapter, as

necessary. We present the main body of this dissertation in Chapters 4-9. We conclude this

dissertation with a discussion of future work in Chapter 10.

1.3 Summary of Contributions

In Chapter 4, we focus on the PC algorithm [35], a classic constraint-based causal

graph discovery algorithm, and propose a differentially private PC algorithm (PrivPC) for

categorical data. PrivPC adopts the exponential mechanism [36] and significantly reduces

the number of edge elimination decisions. Therefore, it incurs much less privacy budget than

the naive approaches that add privacy protection at each conditional independence test.

For numerical data, we further develop a differentially private causal discovery algorithm

(PrivPC*). The idea is to add noise once onto the covariance matrix from which partial

correlations used for conditional independence test can be derived. Experimental results

show that PrivPC and PrivPC* achieve good utility and robustness for different settings of

causal graphs. To our best knowledge, this is the first work on how to enforce differential
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privacy in constraint-based causal graph discovery.

In Chapter 5, we focus on developing a differential privacy preserving method of

network embedding based on the equivalent matrix factorization method [37]. We develop a

differentially private network embedding method (DPNE). In this method, we leverage the

findings that network embedding methods such as DeepWalk and LINE are equivalent to

factorization of some matrices derived from the adjacency matrix of the original network

and apply objective perturbation on the objective function of matrix factorization. We show

that with only adding a small amount of noise onto the objective function, the learned low-

dimensional representations satisfy differential privacy. Experimental results show that the

embedded representations learned by DPNE achieve good utility with a small privacy budget

on both vertex classification and link prediction tasks. To our best knowledge, this is the

first work on how to preserve differential privacy in network embedding.

In Chapter 6, we develop a new generative adversarial network (GAN) model, named

FairGAN, and its enhanced version FairGAN+. FairGAN contains a generator to generate

close-to-real data samples and two discriminators to assist adversarial learning. FairGAN can

learn a generator producing fair data and also preserving good data utility. In addition to

FairGAN, FairGAN+ also contains a classifier to predict class labels and one more discrimi-

nators to assist adversarial learning. FairGAN+ simultaneously achieves fair data generation

and fair classification by co-training a generative model and a classifier through joint adver-

sarial games with the discriminators. Experiments using real world census data show that the

generator of FairGAN/FairGAN+ can achieve fair data generation with good data utility and

free from disparate treatment and disparate impact. The classifier of FairGAN+ can achieve

guaranteed classification fairness in notions of demographic parity or equality of odds with

good classification utility. The co-training of the generative model and the classifier improves
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the performances of each other.

In Chapter 7, we develop a causal fairness-aware generative adversarial network (CF-

GAN) for generating data that achieve various causal-based fairness criteria. CFGAN adopts

two generators, whose structures are purposefully designed to reflect the structures of causal

graph and interventional graph. Therefore, the two generators can respectively simulate the

underlying causal model that generates the real data, as well as the causal model after the

intervention. On the other hand, two discriminators are used for producing a close-to-real

distribution, as well as for achieving various fairness criteria based on causal quantities sim-

ulated by generators. Experiments on a real-world dataset show that CFGAN can generate

high quality fair data.

In Chapter 8, we develop PFLR and PFLR* algorithms to achieve both differential

privacy and fairness in logistic regression. In particular, our enhanced method (PFLR*),

which adds Laplace noise with non-zero mean as equivalence to fairness constraint, can

reduce the amount of added noise and hence better preserve utility. Our idea is based on the

connection between ways of achieving differential privacy and fairness. We conduct evaluation

on two real-world datasets and results show that our approaches meet both differential

privacy and fairness requirements while achieving good utility. To our best knowledge, this

is the first work to study how to achieve both differential privacy and fairness in classification

models.

In Chapter 9, we provide theoretical analysis on the group level cost of privacy and

show the source of disparate impact of differential privacy on each group in the original

DPSGD [38]. Then, we propose a modified DPSGD algorithm, called DPSGD-F, to achieve

differential privacy with equal utility loss w.r.t. each group. It uses adaptive clipping to adjust

the sample contribution of each group, so the privacy level w.r.t. each group is calibrated
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based on their cost of privacy. As a result, the final group utility loss is the same for each

group in DPSGD-F. In our experimental evaluation, we show how group sample size and

group clipping bias affect the impact of differential privacy in DPSGD, and how adaptive

clipping for each group helps to mitigate the disparate impact caused by differential privacy

in DPSGD-F.
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2 Related Work

2.1 Differential Privacy

Differential privacy is widely used on data privacy. The concept of differential privacy

was first proposed in Sub-Linear Queries (SuLQ) output perturbation framework of different

statistical queries learning models [39]. Many mechanisms have been proposed to enforce

differential privacy.

Dwork et al. [1] proved using Laplace mechanism can preserve differential privacy by

calibrating the standard deviation of the noise according to the sensitivity of the query func-

tion. Laplace mechanism can be used to privately release contingency tables [40], histograms

[41], data cubes [42], and spatial decomposition [43].

McSherry and Talwar [36] proposed the exponential mechanism to guarantee differ-

ential privacy in non-numeric sensitive queries by sampling according to a mapping function

instead of adding noise. The exponential mechanism has been widely explored in several

private learning algorithms, such as logistic regression, support vector machine, k-means

clustering [44, 45], decision trees [46], and genetic association framework [47]. In Johnson

and Shmatikov’s work [47], they used the exponential mechanism to privately release the

number of significant SNPs (genes) associated with a trait and to privately release the loca-

tion (GenBank ID) of the significant SNPs. Zhang et al. [48] proposed a differentially private

Bayesian network via randomly selecting attribute-parent pairs based on mutual information

using exponential mechanism.

For many data mining and machine learning algorithms, we usually optimize some

objective functions (e.g., cross entropy) to derive coefficients of released models. Rather than
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adding noise to coefficients of the released model, Chaudhuri et al. [3] proposed an objec-

tive perturbation approach by perturbing the objective function which is convex and doubly

differentiable. Zhang et al. [49] further proposed a functional mechanism to enforce differ-

ential privacy on general optimization-based models, such as linear regression and logistic

regression.

Nissim et al. [50] introduced a smooth sensitivity and sample and aggregate frame-

work. It calibrates instance-specific noise based on a smooth sensitivity to achieve rigorous

differential privacy.

Existing literature in differentially private machine learning targets both convex and

non-convex optimization algorithms and can be divided into three main classes, input per-

turbation, output perturbation, and inner perturbation. Input perturbation approaches [51]

add noise to the input data based on local differential privacy model. Output perturbation

approaches [52] add noise to the model after the training procedure finishes, i.e., without

modifying the training algorithm. Inner perturbation approaches modify the learning algo-

rithm such that the noise is injected during learning. For example, research in [53] modifies

the objective of the training procedure, and research in [38] adds noise to the gradient output

of each step of the training without modifying the objective.

Research in [38] proposed the idea that limiting users to small contributions keeps

noise level at the cost of introducing bias. Research in [54] characterizes the trade-off between

bias and variance, and shows that (1) a proper bound can be found depending on properties

of the dataset and (2) a concrete cost of privacy cannot be avoided simply by collecting

more data. Several works study how to adaptively bound the contributions of users and clip

the model parameters to improve learning accuracy and robustness. Research in [55] uses

coordinate-wise adaptive clipping of the gradient to achieve the same privacy guarantee with
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much less added noise. In federated learning setting, the proposed approach [56] adaptively

clips to a value at a specified quantile of the distribution of update norms, where the value at

the quantile is itself estimated online, with differential privacy. Other than adaptive clipping,

research in [57] adaptively injects noise into features based on the contribution of each to the

output so that the utility of deep neural networks under -differential privacy is improved;

[58] adaptively allocates per-iteration privacy budget to achieve zCDP on gradient descent.

2.2 Fairness-aware Machine Learning

With the wide adoption of automated decision making systems, fairness-aware learn-

ing or anti-discrimination learning becomes an increasingly important task. In fairness-aware

learning, discrimination prevention aims to remove discrimination by modifying the biased

data and/or the predictive algorithms built on the data. Many approaches have been pro-

posed for constructing discrimination-free classifiers, which can be broadly classified into

three categories: the pre-process approaches that modify the training data to remove dis-

criminatory effect before conducting predictive analytics, the in-process approaches that en-

force fairness to classifiers by introducing constraints or regularization terms to the objective

functions, and the post-process approaches that directly change the predicted labels.

The pre-process approaches that modify the training data are widely studied. The

fundamental assumption of the pre-process methods is that, once a classifier is trained on a

discrimination-free dataset, the prediction made by the classifier will also be discrimination

free [59]. Research in [27] proposed several methods for modifying data including Massaging,

which corrects the labels of some individuals in the data, Reweighting, which assigns weights

to individuals to balance the data, and Sampling, which changes the sample sizes of different

subgroups to remove the discrimination in the data. In [14], authors further studied how to
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remove disparate impact by modifying the distribution of the unprotected attributes such

that the protected attribute cannot be estimated from the unprotected attributes. Research

in [15] proposed a causal graph based approach that removes discrimination based on the

block set and ensures that there is no discrimination in any meaningful partition. For the

in-process approaches, some tweak or regularizers are applied to the classifier to penalize

discriminatory prediction during the training process. In principle, preventing discrimination

when training a classifier consists of balancing two contrasting objectives: maximizing the

accuracy of the extracted predictive model and minimizing the number of predictions that are

discriminatory. Research in [19] proposed a predictive model for maximizing utility subject

to the fair constraint that achieves both statistical parity and individual fairness, i.e., similar

individuals should be treated similarly. In [16], authors proposed a framework for optimally

adjusting any predictive model so as to remove discrimination.

Reweighting or sampling changes the importance of training samples according to an

estimated probability that they belong to the protected group so that more importance is

placed on sensitive ones [60, 19]. Adaptive sensitive reweighting uses an iterative reweighting

process to recognize sources of bias and diminish their impact without affecting features or

labels [61]. [62] uses agnostic learning to achieve good accuracy and fairness on all subgroups.

However, it requires a large number of iterations, thus incurring a very high privacy loss.

Other approaches to balance accuracy across classes include oversampling, adversarial train-

ing with a loss function that overweights the underrepresented group, cost-sensitive learning,

and resampling.

Recently, several studies have been proposed to remove discrimination through adver-

sarial training. Research in [63] incorporated an adversarial model to learn a discrimination

free representation. Based on that, research in [64] studied how the choice of data for the
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adversarial training affects the fairness. Studies in [65, 66] further proposed various adver-

sarial objectives to achieve different levels of group fairness including demographic parity,

equalized odds and equal opportunity.

Most researches on fairness-aware machine learning study whether the predictive

decision made by machine learning model is discriminatory against the protected group

[16, 65, 66, 67, 68, 69]. For example, demographic parity requires that a prediction is in-

dependent of the protected attribute. Equality of odds [16] requires that a prediction is

independent of the protected attribute conditional on the original outcome. These fairness

notions focus on achieving non-discrimination within one single model.

As paid increasing attentions recently by researchers, fairness is a causal notion that

concerns the causal connection between the sensitive attributes and the challenged decisions

or outputs [28, 29, 30, 31, 32, 33]. Based on Pearl’s causal modeling framework [34], a num-

ber of causal-based fairness notions and criteria have been proposed, including total effect

[29], direct discrimination [28], indirect discrimination [28], and counterfactual fairness [31].

Each notion captures fairness in one particular situation from the causal perspective. Total

effect treats all causal effects from the sensitive attribute to the decision as unfair. Direct

and indirect discrimination, on the other hand, consider the situation where discrimination is

transmitted through certain paths in the causal graph. Counterfactual fairness again consid-

ers a different situation where we focus on the fairness with respect to a particular individual

or a subgroup of individuals instead of the whole population.

2.3 Differential Privacy and Fairness

Recent works study the connection between achieving privacy protection and fairness.

Research in [19] proposed a notion of fairness that is a generalization of differential privacy.
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Research in [70] developed a pattern sanitization method that achieves k-anonymity and

fairness. Most recently, the position paper [71] argued for integrating recent research on

fairness and non-discrimination to socio-technical systems that provide privacy protection.

Later on, several works studied how to achieve within-model fairness (demographic parity

[72, 73], equality of odds [74], equality of opportunity [75]) in addition to enforcing differential

privacy in the private model. In addition to the within-model fairness, cross-model fairness

also arises in differential privacy preserving machine learning models when we compare the

accuracy loss incurred by private model between the majority group and the protected group.

Recently, research in [76] shows that the reduction in accuracy incurred by deep private

models disproportionately impacts underrepresented subgroups. The unfairness in this cross-

model scenario is that the reduction in accuracy due to privacy protection is discriminatory

against the protected group. Our work studies how to prevent disparate impact of the private

model on model accuracy across different groups.
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3 Preliminaries

3.1 Differential Privacy

Differential privacy guarantees the output of a query to be insensitive to any particular

record’s presence or value in the dataset. Let D be a sensitive dataset that contains n records

with p attributes. Differential privacy guarantees the output of a query f be insensitive to

one individual record in a dataset. We use D and D′ to denote two neighboring datasets

which differ in exactly one record (|D −D′| = 1).

Definition 1. Differential privacy [1]. A mechanismM satisfies ε-differential privacy, if for

all neighboring datasets D and D′ and all subsets Z of M’s range:

P (M(D) ∈ Z) ≤ exp(ε) · P (M(D′) ∈ Z). (3.1)

The parameter ε denotes the privacy budget, which controls the amount by which

the distributions induced by D and D′ may differ.

Definition 2. Global sensitivity [1]. Given a function f , the sensitivity Sf (D) is defined as

Sf (D) = max
D,D′
||f(D)− f(D′)||1. (3.2)

The global sensitivity measures the maximum possible change in q(D) when one

record in the dataset changes.

Differential privacy has two useful properties: (a) Composability: let M1 be an ε1-

differentially private mechanism, and letM2 be an ε2-differentially private mechanism. Then

their combination is ε1 + ε2-differentially private. (b) Security under post-processing: any

15



transformation or query over a differentially private result g(M(D)) is still differentially

private, as long as it doesn’t acquire additional access to input dataset D.

Many mechanisms have been proposed to enforce differential privacy.

3.1.1 Laplace Mechanism

Laplace Mechanism is a popular method to achieve differential privacy. It adds iden-

tical independent noise into each output value of f(D). We use Sf (D) to denote sensitivity

of f(D). It measures the maximum possible change in f(D) when one tuple in the dataset

changes.

Theorem 1. Laplace mechanism [1]. Given a dataset D and a query f , a mechanism

M(D) = f(D) + η satisfies ε-differential privacy, where η is a random vector drawn from

Lap(Sf (D)/ε).

3.1.2 Gaussian Mechanism

Alternatively, we can use Gaussian noise instead of Laplace noise to achieve differential

privacy. The Gaussian mechanism with parameter σ adds Gaussian noise N(0, σ2) to each

component of the model output.

Theorem 2. Gaussian mechanism [77]. Let ε ∈ [0, 1] be arbitrary. For c2 > 2 log(1.25/δ),

the Gaussian mechanism with parameter σ > c∆f/ε satisfies (ε, δ)-differential privacy.

The parameter δ is a broken probability. Smaller values of ε and δ indicate stronger

privacy guarantee.
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3.1.3 Exponential Mechanism

The exponential mechanism is a differentially private method which selects one out-

come from a set of potential outcomes based on some probability distribution. For a given

training dataset D and privacy budget ε, the quality function induces a probability distribu-

tion over the output domain (usually class labels), from which the outcomes are exponentially

chosen. It favors higher scoring classes, while guaranteeing ε-differential privacy.

Definition 3. L1-sensitivity [36]. Let q : D → R be a quality function that scores each

output class r ∈ R. The sensitivity of this function is defined as

S(q(D, r)) = max
D,D′,r∈R

||q(D′, r)− q(D, r)||1. (3.3)

Theorem 3. Exponential mechanism [36]. Given a dataset D, the exponential mechanism

lets M randomly select a potential outcome r based on the following probability, then the

mechanism Mε
q,S(q)(D,R) is ε-differentially private:

P (r ∈ R is selected) ∝ exp

(
εq(D, r)

2S(q)

)
. (3.4)

The exponential mechanism works as follow: assume the goal is to output an output

r ∈ R from its known output domain R. There exists a quality function q(D, r) that mea-

sures the quality of an output r, given that the dataset is D. The exponential mechanism

Mε
q,S(q)(D,R) outputs r ∈ R with probability proportional to exp

(
εq(D, r)

2S(q)

)
and ensures

ε-differential privacy. The mechanism assigns the highest probability to the best answer, and

the probability assigned to any other drops off exponentially in the decline in its quality

function.
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3.1.4 Objective Perturbation

Chaudhuri et al. [3] proposed an objective perturbation approach by perturbing the

objective function L and then optimizing the perturbed objective function,

Lpriv(ω,G) = L(ω,G) + ωηT , (3.5)

where η is a random noise vector and its probability density is given by

Pr(η) ∝ e−β||η||, (3.6)

and the parameter β is a function of privacy budget ε and the scale of ||5ωL(ω, eij)||. To

implement this, we pick the norm of η from the Γ(k, β) distribution and the direction of η uni-

formly at random. Then we compute the private output ω̂, where ω̂ = arg minω Lpriv(ω,G)

satisfies ε-differential privacy.

3.1.5 Functional Mechanism

Functional mechanism [4] achieves ε-differential privacy by injecting noise into the

objective function of the model and returns privacy preserving parameter w̄ that minimizes

the perturbed objective function.

Because the objective function fD(w) is a complicated function of w, the functional

mechanism exploits the polynomial representation of fD(w). The model parameter w is a

vector that contains d values w1, w2, · · · , wd. Let φ(w) denote a product of w1, w2, · · · , wd,

i.e., φ(w) = wc11 · wc22 · · ·w
cd
d for some c1, c2, · · · , cd ∈ N. Let Φj (j ∈ N) denote the set of

all products of w1, w2, · · · , wd with degree j, i.e., Φj = {wc11 w
c2
2 · · ·w

cd
d |
∑d

l=1 cl = j}. For
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example, Φ1 = {w1, w2, · · · , wd}, and Φ2 = {wi · wj|i, j ∈ [1, d]}.

Based on the Stone-Weierstrass Theorem [78], any continuous and differentiable func-

tion can be expressed in the polynomial representation. Hence, the objective function fD(w)

can be expressed as a polynomial of w1, w2, · · · , wd, for some J ∈ N:

fD(w) =
n∑
i=1

J∑
j=0

∑
φ∈Φj

λφtiφ(w), (3.7)

where λφti ∈ R denotes the coefficient of φ(w) in the polynomial.

Functional mechanism perturbs the objective function fD(w) by injecting Laplace

noise into its polynomial coefficients λ̄φ =
∑n

i=1 λφti+Lap(0,
∆
ε

), where ∆ = 2 max
t

∑J
j=1

∑
φ∈Φj

||λφt||1.

Then the model parameter w̄ is derived to minimize the perturbed function f̄D(w).

Applying Functional Mechanism on Logistic Regression. A logistic regression

on D returns a function which predicts ŷi = 1 with probability:

ŷi = q(xi; w) = exp(xTi w)/(1 + exp(xTi w)). (3.8)

The objective function of logistic regression is defined as:

fD(w) =
n∑
i=1

[
log(1 + exp(xTi w))− yixTi w

]
. (3.9)

As the polynomial form of fD(w) in Equation 3.9 contains terms with unbounded degrees,

to apply the functional mechanism, Equation 3.9 is rewritten as the approximate polynomial
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representation based on Taylor expansion [4]:

fD(w) =
( n∑
i=1

2∑
j=0

f
(j)
1 (0)

j!

(
xTi w

)j )− ( n∑
i=1

yix
T
i

)
w, (3.10)

where f1(·) = log(1 + exp(·)).

When rewriting Equation 3.10 in the form of Equation 3.7, we have

{λφti}φ∈Φ1 =: λ1ti =
(f (1)1 (0)

1!
xi
)
−
(
yixi

)
, (3.11)

{λφti}φ∈Φ2 =: λ2ti =
f
(2)
1 (0)

2!
(xi)

2 . (3.12)

The global sensitivity of fD(w) is:

∆f = 2 max
t

(∣∣∣(f (1)
1 (0)

1!
− y
) d∑
l=1

x(l)

∣∣∣+
∣∣∣f (2)

1 (0)

2!

d∑
l,m

x(l)x(m)

∣∣∣)
≤ 2(

d

2
+
d2

8
) =

d2

4
+ d.

(3.13)

Thus, to achieve ε-differential privacy, the functional mechanism adds Lap(0,
∆f

ε
) noise to

the polynomial coefficients of the objective function.

3.1.6 Differentially Private Stochastic Gradient Descent

The procedure of deep learning model training is to minimize the output of a loss

function through numerous stochastic gradient descent (SGD) steps. [38] proposed a dif-

ferentially private SGD algorithm (DPSGD). DPSGD uses a clipping bound on l2 norm of

individual updates, aggregates the clipped updates, and then adds Gaussian noise to the

aggregate. This ensures that the iterates do not overfit to any individual user’s update.

The privacy leakage of DPSGD is measured by (ε, δ), i.e., computing a bound for
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Algorithm 1 DPSGD (Dataset D, loss function LD(w), learning rate r, batch size b, noise
scale σ, clipping bound C)

1: for t ∈ [T ] do
2: Randomly sample a batch of samples Bt with |Bt| = b from D
3: for each sample xi ∈ Bt do
4: gi = OLi(wt)
5: end for
6: for each sample xi ∈ Bt do

7: ḡi = gi ×min
(

1, C
|gi|

)
8: end for
9: G̃B = 1

b
(
∑

i ḡi +N(0, σ2C2I))

10: w̃t+1 = w̃t − rG̃B

11: end for
12: Return w̃T and accumulated privacy cost (ε, δ)

the privacy loss ε that holds with certain probability δ. Each iteration t of DPSGD can be

considered as a privacy mechanismMt that has the same pattern in terms of sensitive data

access. [38] further proposed a moment accounting mechanism which calculates the aggregate

privacy bound when performing SGD for multiple steps. The moments accountant computes

tighter bounds for the privacy loss compared to the standard composition theorems. The

moments accountant is tailored to the Gaussian mechanism and employs the log moment

of each Mt to derive the bound of the total privacy loss. The log moment of privacy loss

follows linear composability.

Theorem 4. Composability of moments [38]. For a given mechanismM, the λth moment

αM(λ) , max
aux,D,D′

αM(λ; aux,D,D′), where the maximum is taken over all possible auxiliary

input aux and all neighboring datasets D,D′. Suppose that a mechanism M consists of a

sequence of adaptive mechanisms M1, . . . ,Mp, where Mi :
∏i−1

j=1Rj × D → Ri. Then, for

any λ

αM(λ) ≤
p∑
i=1

αMi
(λ).
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To reduce noise in private training of neural networks, DPSGD [38] truncates the

gradient of a neural network to control the sensitivity of the sum of gradients. This is because

the sensitivity of gradients and the scale of the noise would otherwise be unbounded. To fix

this, a cap C on the maximum size of a user’s contribution is adopted (Line 7 in Algorithm 1).

This will bias our estimated sum but also reduce the amount of added noise, as the sensitivity

of the sum is now C. One question is how to choose the truncation level for the gradient

norm. If set too high, the noise level may be so great that any utility in the result is lost. If

set too low, a large amount of gradients will be forced to clip. DPSGD simply suggests using

the median of observed gradients. [54] investigated this bias-variance trade-off and showed

that the limit we should choose is the (1−1/bε)-quantile of the gradients themselves. It does

not matter how large or small the gradients are above or below the cutoff, only that a fixed

number of values are clipped.

3.2 Fairness-aware Machine Learning

In fairness-aware learning, the literature has studied notions of group fairness on data

and classification [16, 27].

3.2.1 Fairness in Data

Consider a labeled dataset D, which contains a set of unprotected attributes X ∈ Rn,

a class label Y ∈ {0, 1} and a protected attribute S ∈ {0, 1}. Note that we consider S and

Y as binary variables for ease of discussion.

Definition 4. Statistical fairness is a notion of data fairness which measures the potential

discrimination caused by the correlation between the class label Y and the protected attribute

S. The property of statistical fairness is defined as P (Y = 1|S = 1) = P (Y = 1|S = 0).
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Research in [14] proposed the concept of ε-fairness to examine the potential discrim-

ination caused by the correlation between the unprotected attributes X and the protected

attribute S.

Definition 5. A labeled dataset D is said to be ε-fair if for any classification algorithm

f : X→ S, BER(f(X), S) > ε with empirical probabilities estimated from D, where BER

(balanced error rate) is defined as

BER(f(X), S) = P (f(X)=0|S=1)+P (f(X)=1|S=0)
2

. (3.14)

BER indicates the average class-conditioned error of f on distribution D over the

pair (X, S).

3.2.2 Fairness in Classification

Consider the classifier η : X → Y which predicts the class label Y given the unpro-

tected attributes X. Classification fairness requires that the predicted label η(X) is unbiased

with respect to the protected variable S. The following notions of fairness in classification

were defined by [16] and refined by [64].

Definition 6. Demographic parity. Given a labeled dataset D and a classifier η : X → Y ,

the property of demographic parity is defined as P (η(X) = 1|S = 1) = P (η(X) = 1|S = 0).

This means that the predicted labels are independent of the protected attribute.

Definition 7. Equality of odds. Given a labeled dataset D and a classifier η, the property

of equality of odds is defined as P (η(X) = 1|Y = y, S = 1) = P (η(X) = 1|Y = y, S = 0),

where y ∈ {0, 1}.
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Hence, for Y = 1, equality of odds requires the classifier η has equal true positive rates

(TPR) between two subgroups S = 1 and S = 0; for Y = 0, the classifier η has equal false

positive rates (FPR) between two subgroups. Equality of odds promotes that individuals

who qualify for a desirable outcome should have an equal chance of being correctly classified

for this outcome. It allows for higher accuracy with respect to non-discrimination. It enforces

both equal true positive rates and false positive rates in all demographics, punishing models

that perform well only on the majority.

In many binary classification cases, Y = 1 is a more important outcome. With only

requiring non-discrimination on the specific outcome group, the equality of odds can be

relaxed to the equality of opportunity.

Definition 8. Equality of opportunity. Given a labeled dataset D and a classifier η, the

property of equality of opportunity in a classifier is defined as P (η(X) = 1|Y = 1, S = 1) =

P (η(X) = 1|Y = 1, S = 0).

The equality of opportunity only focuses on the true positive rates.

Based on demographic parity, the discrimination of the model can be quantified by

risk difference (RD):

RD = |Pr(Ŷ = 1|S = 1)− Pr(Ŷ = 1|S = 0)|. (3.15)

To achieve classification fairness, the in-processing approaches are to find parameter w that

minimizes the objective function under a fairness constraint:

minimize fD(w)

subject to gD(w) ≤ τ, gD(w) ≥ −τ,
(3.16)
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where gD(w) is the constraint term; τ ∈ R+ is the threshold of constraint. For example,

in [18], the fairness constraint is defined as the covariance between the users’ protected

attribute and the signed distance from the users’ unprotected attribute vectors to the decision

boundary {dw(xi)}ni=1,

gD(w) = E[(s− s̄)dw(x)]− E[(s− s̄)]dw(x) ∝
n∑
i=1

(si − s̄)dw(xi), (3.17)

where s̄ is the mean value of the protected attribute; E[(s− s̄)] = 0. For linear classification

models, like logistic regression or linear SVMs, the decision boundary is simply the hyper-

plane defined by xTw = 0. Then, Equation 3.17 reduces to gD(w) =
∑n

i=1(si − s̄)xTi w. The

decision boundary fairness is proven to be a notion of fairness that minimizes the surrogate

risk difference [79].

3.2.3 Causation-based Fairness

Recent researches [28, 29, 30, 31, 32, 33] showed that fairness should be studied from

the causal perspective, and proposed a number of fairness criteria based on Pearl’s causal

modeling framework [34].

3.2.3.1 Causal Model and Intervention

Definition 9. A causal model [34] is a triple M = {U,V,F} where

1) U is a set of hidden random variables that are determined by factors outside the model.

A joint probability distribution P (U) is defined over the variables in U.

2) V is a set of observed random variables that are determined by variables in U ∪V.

3) F is a set of deterministic functions; for each Vi ∈ V, a corresponding function fVi is a
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mapping from U∪ (V \ {Vi}) to Vi, i.e., Vi = fVi(PaVi ,UVi), where PaVi ⊆ V\{Vi} is called

the parents of Vi, and UVi ⊆ U.

A causal model is often illustrated by a causal graph G [34], where each observed

variable is represented by a node, and the causal relationships are represented by directed

edges →. In this graphical representation, the definition of parents is consistent with that

in the causal model. In addition, each node Vi is associated with a conditional distribution

given all its parents, i.e., P (Vi|PaVi).

Inferring causal effects in the causal model is facilitated by do-operator [34], which

simulates the physical intervention that forces some variable X ∈ V to take certain value

x. For a causal model M, intervention do(X = x) is performed by replacing original func-

tion X = fX (PaX ,UX) with X = x. After replacing, the distributions of all variables that

are the descendants of X may be changed. We call the causal model after the interven-

tion the interventional model, denoted by Mx. Correspondingly, Mx can be illustrated by

the interventional graph Gx where all incoming edges to X are deleted and node X is re-

placed with constant x. The interventional distribution for any Y ⊆ V \ {X} is denoted by

P (Y|do(X = x)) or P (Yx). Symbolically, P (Yx) can be expressed as a truncated factoriza-

tion formula [34] and computed from the observed distribution.

3.2.3.2 Causal Effects

With the help of do-operator, we can infer the causal effect of X on Y by comparing

the difference in interventional distributions under different interventions. Based on how the

intervention is transferred in the causal model (graph), there are mainly three types of causal

effects: total effect, path-specific effect, counterfactual effect [34].

The total effect measures the causal effect of X on Y where the intervention is trans-
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ferred along all causal paths (i.e., directed paths) from X to Y .

Definition 10. The total effect of the value change of X from x1 to x2 on Y is given by

TE(x2, x1) = P (Yx2)− P (Yx1).

The path-specific effect measures the causal effect of X on Y where the intervention

is transferred only along a subset of causal paths from X to Y , which is also referred to as

the π-specific effect denoting the subset of causal paths as π.

Definition 11. Given a path set π, the π-specific effect of the value change of X from x1

to x2 on Y (with reference x1) is given by SEπ(x2, x1) = P (Yx2|π)− P (Yx1|π), where P (Yx|π)

represents the interventional distribution where the intervention is transferred only along π.

In the total effect and path-specific effect, the intervention is performed on the whole

population. The counterfactual effect measures the causal effect while the intervention is

performed conditioning on only certain individuals or groups specified by a subset of observed

variables O = o.

Definition 12. Given a context O = o, the counterfactual effect of the value change of X

from x1 to x2 on Y is given by CE(x2, x1|o) = P (Yx2|o)− P (Yx1|o).

3.3 Generative Adversarial Networks

Generative adversarial networks (GAN) have been shown to able to generate high

quality synthetic data that are similar to real data [26, 80]. A GAN model consists of two

components: a generator G and a discriminator D. Typically, both G and D are multilayer

neural networks. G(z) generates fake samples from a prior distribution Pz on a noise variable

z and learns a generative distribution PG to match the real data distribution Pdata. The
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Figure 3.1: Illustration of generative adversarial networks

discriminative component D is a binary classifier that predicts whether an input is real data

x or fake data generated from G(z). Figure 3.1 illustrates the structure of GAN.

The objective function of D is defined as:

max
D

Ex∼Pdata
[logD(x)] + Ez∼Pz [log(1−D(G(z)))], (3.18)

where D(·) outputs the probability that · is from the real data rather than the generated

fake data. In order to make the generative distribution PG close to the real data distribution

Pdata, G is trained by fooling the discriminator unable to distinguish the generated data from

the real data. Thus, the objective function of G is defined as:

min
G

Ez∼Pz [log(1−D(G(z)))]. (3.19)

Minimization of Equation 3.19 ensures that the discriminator is fooled by G(z) and D pre-

dicts high probability that G(z) is real data.

Overall, GAN is formalized as a minimax game min
G

max
D

V (G,D) with the value

function:

V (G,D) = Ex∼Pdata
[logD(x)] + Ez∼Pz [log(1−D(G(z)))]. (3.20)

GAN for discrete data generation. The generator of a regular GAN cannot
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generate discrete samples [26]. In order to tackle this limitation, medGAN incorporates an

autoencoder in a regular GAN model to generate high-dimensional discrete variables [81]. A

basic autoencoder consists of an encoder Enc and a decoder Dec. The objective function of

the autoencoder is to make the reconstructed input x′ close to the original input x:

LAE = ||x′ − x||22, (3.21)

where x′ = Dec(Enc(x)).

To generate the dataset which contains discrete attributes, the generator GDec in

medGAN consists of two components, the generator G and the decoder Dec. The generator

G is trained to generate the salient representations. The decoder Dec from autoencoder

seeks to construct the synthetic data from the salient representations Dec(G(z)). Hence,

the generator of medGAN GDec(z) is defined as: GDec(z) = Dec(G(z)), where z is a noise

variable. The discriminator D aims to distinguish whether the input is from real data or

Dec(G(z)). The generator GDec can be viewed as a regular generator G with extra hidden

layers that maps continuous salient representations to discrete samples.

Auxiliary classifier GAN. Research in [82] proposed a variant of the GAN struc-

ture, called auxiliary classifier generative adversarial networks (ACGAN). Each generated

sample has a corresponding class label y in addition to the noise z. A classifier is incorporated

into the model to reconstruct the class label from the data samples. The generator G(y, z)

can produce class conditional samples that match both the real data distribution and the

class conditions.

CausalGAN. Research in [83] shows that GAN can be modified to generate both

observational and interventional distributions while preserving the causal structure among
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all attributes, referred to as the CausalGAN. Given a causal graph, generator G(Z) attempts

to play the role of a causal model that agrees with this causal graph in terms of both the

graph structure and conditional distributions. To this end, noises Z are partitioned into |V|

subsets {ZV1 ,ZV2 , . . .}, each of which ZVi plays the role of hidden variables UVi . Similarly,

generator G(Z) is partitioned into |V| sub-neural networks {GV1 , GV2 , . . .}, each of which GVi

plays the role of function fVi for generating the values of Vi. Then, if node Vj is a parent of Vi

in the causal graph, the output of GVj is designed as an input of GVi to reflect this connection.

Meanwhile, the adversarial game is played to ensure PG(G(Z) = v) = P (V = v),∀v. The

authors have proved that G(Z) is consistent with any causal model that agrees with the

same causal graph in terms of any identifiable interventional distributions, if: (1) P (V) is

strictly positive; (2) the connections of sub-neural networks GVi are arranged to reflect the

causal graph structure; and (3) the generated observational distribution matches the real

observational distribution, i.e., PG(G(Z) = v) = P (V = v),∀v. Therefore, CausalGAN can

be used to simulate the real causal model that agrees with the causal graph in identifiable

situations.
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4 Differentially Private Causal Graph Discovery

4.1 Introduction

Understanding the cause-effect relationships helps people make decisions in a rational

manner. Traditionally, experimental intervention is conducted to identify causal effect. How-

ever, it’s often difficult, if not infeasible to set up experiments for high-dimensional datasets.

Causal graphs are widely used to discover the causal relationships among multiple random

variables [84, 85].

A causal graph is a probabilistic graphical model, which conveniently captures the

causal structure among random variables. It is a computationally difficult task to estimate a

causal graph from data, as the number of possible causal graphs increases super-exponentially

to the number of nodes. Constraint-based methods [35, 34] are shown accurate and efficient

in reconstructing causal patterns in many applications. The PC algorithm [35] is one of the

commonly-used constraint-based methods for causal graph discovery. Under Causal Markov

and faithfulness assumptions, the PC algorithm is demonstrated to obtain accurate causal in-

formation with only observational data [35]. The procedure of the PC algorithm is as follows.

It first forms a complete, undirected graph and then recursively deletes edges according to

conditional independence tests. The PC algorithm is computationally feasible and consistent

even for sparse causal graphs. It achieves consistently good and causal graph faithfulness (i.e.,

that the data can be assumed to be simulated from a probability distribution that factorizes

according to a causal graph).

Causal graphs can provide extensive information for individuals and policy makers.

However, when causal graph discovery is performed on a large amount of sensitive individual
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data, it raises individual participants’ concerns about their privacy, e.g. in the fields of

medical or financial analysis. This is because releasing aggregated findings may risk leakage

of individual private information. For instance, Homer [86] demonstrated that attackers can

use aggregated genetic data to infer whether an individual had participated in a genome

study. One solution to protect individual privacy against leakage risk is differential privacy.

It has not yet been thoroughly studied how to release causal graph information with-

out risking private information leakage. Currently, there is no differentially private PC al-

gorithm for causal graph discovery. It is essential to infer causal relationships with privacy

guarantee. One of the challenges is that the number of conditional independence tests among

nodes is tremendously large. The complexity of PC algorithm increases dramatically with

the dimension and sparseness of a causal graph. It has a very loose upper bound. One naive

method to achieve differential privacy in the PC algorithm is to add protection at each condi-

tional independence test. However, it will require a very large privacy budget. How to reduce

the number of tests or the privacy budget is an essential question for a reliable private PC

algorithm. In this work, we explore how to guarantee individual privacy in the PC algorithm

for causal graph discovery.

We summarize all important notations in Table 4.1.

4.2 Related Work

Causal graph discovery A causal graph is a probabilistic graphical model which

is widely used for causality representation, reasoning and inference [34]. The PC algorithm

[35] is a widely used algorithm for causal graph discovery. The original PC algorithm [35]

is known to be order-dependent, in the sense that the output may depend on the input

order of the variables. There are several modified PC algorithms for causal graph discovery.
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Table 4.1: Notations

Symbol Definition

Adj(G, Vi) the adjacent set of Vi

Ind(G, Vi) the conditionally independent adjacent set of Vi

T (ij|k) the conditional independence test for Vi, Vj given Vk

d(ij|k) a distance score of T (ij|k)

π, πt a permutation, the t-th largest element in π

| • | the size of •
•̂ a differentially private •

Mε
q,S(q)(D,R) an exponential mechanism with a privacy budget ε,

a quality function q and a sensitivity S(q)

on an input dataset D and a output domain R

Colombo and Maathuis [87] proposed a simple modification, called “PCstable”, which yields

order-independent adjacencies in the skeleton. Ramsey et al. [88] proposed a conservative

PC algorithm which has a slight variation in computing all potential v-structures of the

PC algorithm. Kalisch and Buhlmann [89] showed high-dimensional consistency of the PC

algorithm which uses partial correlations derived from independent Gaussian observations

that are faithful to a suitably sparse causal graph. It was later proved that consistency of

Gaussian model can be carried over to a boarder class of Gaussian copula or nonparanormal

models which uses rank-based correlation instead of Pearson correlation [90].

4.3 Preliminaries

In this section, we present the technical preliminaries. We introduce properties of the

causal graph and details of the original PC algorithm. For general preliminaries of differential

privacy, please refer to Chapter 3.1.

Causal Graph Discovery
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4.3.1 Causal Graph

A causal graph is a probabilistic graphical model which is specified by a directed

acyclic graph (DAG) G = (V,E). V = {V1, . . . , Vp} is a set of nodes, each of which corre-

sponds to a variable. E ⊆ V × V is a set of edges, which is a subset of ordered pairs of

distinct nodes. We use Vi → Vj to denote a directed edge. Adj(G, Vi) denotes the adjacency

set of a node Vi on graph G, also called neighbors of Vi.

We use P to denote a probability distribution that is faithful with respect to the

graph G. Consider the set of random variables V ∼ P , faithfulness of P with respect to

G means: if for any Vi, Vj ∈ V(i 6= j) and any set Vk ⊆ V, Vi and Vj are conditionally

independent given Vk, nodes Vi and Vj are d-separated by set Vk [35].

Sometimes two causal graphs can fit the same distribution. These two graphs are

called Markov equivalent. Verma and Pearl [91] demonstrated that two causal graphs are

equivalent if and only if they have the same skeleton and the same v-structures. The skeleton

of a causal graph G is an undirected graph with undirected edges instead of directed edges.

A v-structure is an ordered set of nodes (Vi, Vj, Vk) such that G contains directed edges

Vi → Vj and Vk → Vj, and Vi and Vk are not adjacent in G. All causal graph that are

Markov equivalent belong to the same Markov equivalence class. A Markov equivalence class

can be uniquely represented by a completed, partially directed acyclic graph (CPDAG) [92].

The main goal of estimating a causal graph is to identify the CPDAG, in which it contains

conditional independence information of node sets.

4.3.2 PC Algorithm

The PC algorithm is a constraint-based method for causal graph discovery [35]. It

assumes that the probability distribution P is Markov and faithful with respect to the correct
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graph G, which means all conditional independences in the joint distribution are entailed by

the Markov condition. PC algorithm first estimates the skeleton of the underlying CPDAG,

and then determines the orientation of as many edges as possible.

Algorithm 2 PC algorithm (Vertex set V, Dataset D)

1: Form the complete undirected graph C0 on vertex set V
2: ord = 0; C = C0

3: for all Vi |Adj(C, Vi) \ {Vj}| < ord do
4: for all Vi − Vj with |Vk| = ord have been tested for conditional independence do
5: Select an edge Vi − Vj that are adjacent in C s.t. |Adj(C, Vi) \ {Vj}| ≥ ord
6: for all Vk have been tested do
7: Choose Vk ⊆ Adj(C, Vi) \ {Vj} with |Vk| = ord
8: if Vi, Vj are conditionally independent given Vk based on T (ij|k) then
9: Delete Vi − Vj from C

10: break
11: end if
12: end for
13: end for
14: ord = ord+ 1
15: end for
16: Create a partially directed graph with minimal pattern (Identify unshielded colliders)
17: for each pair of non adjacent variables Vi, Vj with a common neighbor Vk do
18: if Vi, Vj are not conditionally independent given Vk then
19: Orient Vi − Vk − Vj as Vi → Vk ← Vj
20: end if
21: end for
22: Convert to complete pattern: use rules by Pearl [34]
23: for no more edges can be oriented do
24: Rule 1: Vi → Vj − Vk goes to Vi → Vj → Vk (No new collider is introduced)
25: Rule 2: Vi → Vk → Vj with Vi − Vj, then Vi − Vj goes to Vi → Vj (Avoid cycle)
26: Rule 3: Vi − Vj, Vi − Vk, Vi − Vl, Vk → Vj, Vl → Vj but Vk and Vl are not connected;

then Vi − Vj goes to Vi → Vj
27: end for
28: Return Estimated CPDAG G

a) Estimate the skeleton given data: The first phase of PC algorithm is given in

Algorithm 2 (Lines 1−15). Sprites et al [35] proved that: Given a causal graph G and a

distribution P that is faithful to G, this algorithm can construct the true skeleton C of the

causal graph. In the first phase, the skeleton C is an undirected graph. The edge between
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node Vi and Vj is denoted as Vi − Vj.

The complexity of the algorithm is bounded by the maximal reached value of ord.

Note that ord is the condition order of conditional independence test, which is the number

of vertices in conditioned set. Let l be the maximal degree of order and let p be the number

of vertices. Then in the worst case the number of conditional independence tests needed in

the algorithm is bounded by

2

(
p

2

) l∑
ord=0

(
p− 1

ord

)
,

which has a maximal value of

p2(p− 1)l−1

(l − 1)!
.

The computational requirements increase exponentially with l [35]. PC algorithm has

high computational complexity. Each conditional independence test queries input data. Yet,

the number of tests is hard to predict and it has a very loose bound. All of these make it

challenging to achieve differential privacy in PC algorithm.

b) Orient the edges given the skeleton structure: The second phase of PC algorithm is

given in Algorithm 2 (Lines 16−28), which extends skeleton to a CPDAG belonging to the

equivalence class of the underlying true causal graph [34].

Note that the first phase accesses input data for conditional independence tests. The

second phase doesn’t need any information from input data. We only need to preserve privacy

in the first phase. We’ll discuss it in Section IV and V.

An important part of PC algorithm is to conduct conditional independence tests on

dataset D. To estimate if Vi and Vj are conditionally independent given Vk, we use T (ij|k)

to denote its corresponding conditional independence test, which outputs a p-value.

For categorical data, all nodes are random categorical variables. We use Cati to de-
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note the number of categories of variable Vi. A conditional independence test T (ij|k) can

commonly be inferred from a corresponding contingency table by two statistics: χ2 and G2.

The size of a contingency table for the corresponding conditional independence test T (ij|k)

is Cati × Catj ×
∏
h∈k

Cath. Each cell of the contingency table contains the count number of

corresponding value combination of Vi, Vj,Vk (denoted as Nij|k). Using frequency counts in

corresponding contingency table, we calculate χ2 statistic and G2 statistic by the following

formula:

χ2 =
∑ (O − E)2

E

G2 = 2
∑

(O)ln(
O

E
)

where O is the observed value of Nij|k of each cell, E is the expected value of Nij|k of each

cell. The degree of freedom (df) in the test is

df = (Cati − 1)× (Catj − 1)×
∏
h∈k

Cath

The size of a contingency table can be very large for large Cat or ord. It increases

exponentially with ord and polynomially with Cat. For example, a basic contingency table

for all variables has a tremendous size of
p∏
j=1

Catj.

In this work we adopt G2 on corresponding contingency tables for the conditional

independence tests in our experiments.
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4.4 Differentially Private Causal Graph Discovery Algorithm for Categorical

Data

This section describes our approach towards the differentially private causal graph

discovery based on exponential mechanism: a differentially private PC (PrivPC) algorithm.

4.4.1 Differentially Private PC (PrivPC) Algorithm

Only the first phase of the PC algorithm engages with input data to estimate the

skeleton C of the causal graph and may breach participants’ privacy. More specifically, input

data is queried at each conditionally independence test (Line 8 in Algorithm 2) for the con-

tingency table. Thus, we need to protect privacy in the first phase of the PC algorithm. The

naive method attempts to guarantee differential privacy for the corresponding contingency

table at each conditional independence test between pairs of nodes. However, due to the high

complexity of the PC algorithm, this method requires a tremendous amount of the privacy

budget ε.

Our motivation for a reliable private PC algorithm is to consume a smaller privacy

budget by reducing the number of conditional independence tests (or edge elimination de-

cisions) based on the exponential mechanism. By adopting the exponential mechanism, we

can evaluate conditional independence tests on multiple edges simultaneously in one step

rather than waste privacy budget on evaluating the test on each edge. We propose a private

conditionally independent adjacent set selection algorithm to reduce the number of edge

elimination decisions by modifying the original PC algorithm. It makes the decision on edge

elimination at each round of the conditionally independent adjacent set selection instead of

making the decision at each conditional independence test.
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Algorithm 3 PrivPC algorithm (Vertex set V, Dataset D, Privacy budget ε)

1: Form the complete undirected graph C0 on vertex set V
2: ord = 0; C = C0

3: for |Adj(C, Vi)| < ord+ 1 for all Vi, or all privacy budget ε0 is used up do
4: for all nodes Vi with |Adj(C, Vi)| ≥ ord+ 1 have been selected do
5: Select a node Vi s.t. |Adj(C, Vi)| ≥ ord+ 1

6: Privately find the conditionally independent adjacent set Înd(C, Vi)
findPrivInd

(
Vi, Adj(C, Vi), ord,D, ε1, ε2

)
7: for all Vj ∈ Înd(C, Vi) do
8: Delete Vi − Vj from C
9: end for

10: end for
11: ord = ord+ 1
12: end for
13: Run Algorithm 2 from Line 16 to Line 28 to orient the edges from a differentially private

skeleton structure

Algorithm 3 shows how to estimate CPDAG with respect to differential privacy using

the exponential mechanism. Different from the original PC algorithm which makes decision

on the edge deletion for each edge Vi − Vj after every conditional independence test, we

propose a conditionally independent adjacent set selection procedure based on the exponential

mechanism (Line 6). Conditionally independent adjacent set selection can make the exact

same edge elimination decision as original PC algorithm, so it’s a viable alternative PC

algorithm.

In Algorithm 3, we first define an order ord of conditional independence test (Line

5). Then, we select a node Vi and find the private subset Înd(C, Vi) of the adjacent nodes

Adj(C, Vi) by applying the exponential mechanism. The subset Înd(C, Vi) is conditionally

independent to node Vi given Vk with |Vk| = ord (Line 6). Once we get the conditionally

independent adjacent set Înd(C, Vi), we delete Vi − Vj for each node Vj ∈ Înd(C, Vi) (Line

7-8). Instead of using part of the privacy budget on each conditional independence test (the

naive method), Algorithm 3 splits (ε1 + ε2) of the total budget ε onto each round of the
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conditionally independent adjacent set selection procedure.

The first phase of the PrivPC algorithm stops if all privacy budget ε is used up. If

early terminated, only high-order conditional independence tests are compromised. The early

termination introduces acceptable errors, because the high-order conditional independence

is rare in many cases.

4.4.2 Differentially Private Conditionally Independent Adjacent Set Selection

Procedure: Details

Algorithm 4 Privately find the conditionally independent adjacent set of Vi
findPrivInd(Vi, Adj(C, Vi), ord, Dataset D, ε1, ε2)

1: R1 = Adj(C, Vi)
2: for each Vj ∈ Adj(C, Vi) do
3: Find Vkij ⊆ Adj(C, Vi) \ {Vj} with |Vkij | = ord which has the maximal T (ij|kij)
4: Calculate d(ij|kij) by Equation 4.1
5: q1(Vj, D) = d(ij|kij)
6: end for
7: R2 = {0, 1, . . . , |Adj(C, Vi)|}
8: Calculate q2 for 0, 1, . . . , |Adj(C, Vi)| by Equations 4.2,4.3,4.4
9: β̂ =Mε2

q2,1
(D,R2)

10: Înd(C, Vi) = ∅
11: for t = 1, . . . , β̂ do

12: Vr =Mε1/β̂
q1,1

(D,R1)

13: Înd(C, Vi) = Înd(C, Vi)
⋃
{Vr}

14: R1 = R1 \ {Vr}
15: end for
16: Return Înd(C, Vi)

To achieve differential privacy in the conditionally independent adjacent set selection,

we use the exponential mechanism to privately select nodes from the adjacent set Adj(C, Vi)

into the private conditionally independent adjacent set Înd(C, Vi) (given in Algorithm 4).

At each node selection, we privately select one node from the adjacent set Adj(C, Vi) until

all conditionally independent nodes are selected into Înd(C, Vi). The output domain of the

40



node selection is all the nodes in Adj(C, Vi). We first find a distance score d(ij|kij) for all Vj,

which is used to define the quality functions. Then we use a quality function q1 to score each

node in Adj(C, Vi) and use the exponential mechanism to select Înd(C, Vi) according to q1.

However, the iteration number of the node selection β may also risk leakage of participants’

privacy because it reveals the number of conditionally independent adjacent nodes. Thus,

we also need to privately determine β̂. The domain of β̂ is from 0 to |Adj(C, Vi)|. We use

the exponential mechanism to determine β̂ according to the quality function q2. Thus, all

decisions made in the conditionally independent adjacent set selection procedure ensure

differential privacy.

Distance score: We need to define a quality function q : D → R that assigns a

value to each potential output. However, the conditional independence test p-value has high

sensitivity, making it challenging to produce accurate yet private answers via the exponential

mechanism. We first find Vkij ⊆ Adj(C, Vi) \ {Vj} with |Vkij | = ord that has the maximal

T (ij|kij); then we calculate a distance score d(ij|kij) [47] as follows:

d(ij|kij) =



min{d = |D −D′|} ⇒ T (ij|kij)
∣∣∣D′ ≥ τ

if T (ij|k)
∣∣∣D ≤ τ ,

−min{d = |D −D′|} ⇒ T (ij|kij)
∣∣∣D′ < τ

otherwise,

(4.1)

where D′ denotes a d-distance neighboring dataset that has d records different from D.

d(ij|kij) is the minimum number of records in D that must be changed s.t. T (ij|kij)

(which returns a p-value) is above the significance threshold τ . The sign of d(ij|kij) indicates

the significance of independence test for edge Vi − Vj. The value of d(ij|kij) has a good

approximation to p-value in terms of the conditional independence information, but it has
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a small sensitivity. Hence, we can define the quality functions based on the distance score.

For example, a conditional independence test T (ij|kij) on dataset D returns a below-

threshold p-value (a significant conditional independence); d(ij|kij) finds the minimum d-

distance neighboring dataset D′ s.t. T (ij|kij) on D′ returns an above-threshold p-value, and

gives it a positive sign to indicate that T (ij|kij) on D is below the significance threshold.

Privately select a node into the conditionally independent adjacent set:

We use Mε1/β̂
q1,1

(D,R1) (Line 13 of Algorithm 4) to select a node into Înd(C, Vi). The output

domain R1 is all nodes in Adj(C, Vi); the quality function q1 for each node Vj ∈ Adj(C, Vi)

is the distance score d(ij|kij). The node Vj with a higher corresponding distance score has a

higher probability to be selected by the exponential mechanism.

Corollary 1. The private node selection achieves ε1-differential privacy by applyingMε1/β̂
q1,1

(D,R1).

The L1-sensitivity S(q1(D, r)) of quality function q1 is 1.

Proof: as one record can only change the distance score (Equation 4.1) by 1, the

sensitivity of q1 is at most 1.

Then we iterate the private node selection for β̂ times from the remaining nodes in

R1.

In each round of the conditionally independent adjacent set selection, Mε1/β̂
q1,1

(D,R1)

uses ε1 out of total privacy budget ε0. Each iteration uses ε1/β̂ to select one node into the

conditionally independent adjacent set.

Privately select the iteration number of the node selection: Because the it-

eration number of the node selection need to be privately produced, we use the exponential

mechanism Mε
q2,1

(D,R2) to privately return β̂ (Line 10 of Algorithm 4). Let π be the per-

mutation that sorts all choices of Vj ∈ Adj(C, Vi) by decreasing distance d(ij|kij), where πt

42



denotes the t-th largest element in π. Thus, d(πt) finds the t-th largest d(ij|kij).

The output domain R2 of β̂ is {0, 1, . . . , α} (α = |Adj(C, Vi)|). We assign a score of

the quality function q2 to each output as follows:

For 0 < t < α,

q2(t,D) =



min
(
d(πt),−d(πt+1)

)
− 1,

if
(

p-value(πt) < τ
)
∧
(

p-value(πt+1) ≥ τ
)

;

−d(πt+1),

if
(

p-value(πt) < τ
)
∧
(

p-value(πt+1) < τ
)

;

d(πt) , otherwise.

(4.2)

and

q2(0, D) =


−d(π1)− 1 , if p-value(π1) ≥ τ ;

−d(π1) , otherwise.

(4.3)

q2(α,D) =


d(πα)− 1 , if p-value(πα) < τ ;

d(πα) , otherwise.

(4.4)

The quality function q2 is based on the sorted distance scores. The exponential mecha-

nism has a higher probability to select the number in the permutation at which the distance

score flips from positive to negative. If all distance scores are negative, the exponential

mechanism has a higher probability to select β̂ = 0. If all distance scores are positive, the

exponential mechanism has a higher probability to select β̂ = |Adj(C, Vi)|.

Corollary 2. The private selection of iteration number achieves ε2-differential privacy by

applying Mε
q2,1

(D,R2). The L1-sensitivity S(q2(D, r)) of quality function q2 is 1.

Proof: one record can only change the distance score (Equation 4.1) by 1. Because q2
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provides a desired lower bound on the distance score (Equation 4.1), q2 changes at most 1

when the distance is changed by 1. Thus, the sensitivity of q2 is at most 1.

In each round of the conditionally independent adjacent set selection, Mε2
q2,1

(D,R2)

uses ε2 out of total privacy budget ε.

Theorem 5. The PrivPC algorithm achieves ε-differential privacy by recursively applying

private conditionally independent adjacent set selection procedure.

Proof: the proof follows by a combination of Corollary 1 and Corollary 2. PrivPC

queries D in the private conditionally independent adjacent set selection procedure. One

round of the private conditionally independent adjacent set selection achieves (ε1 + ε2)-

differential privacy. PrivPC repeats this procedure until all of total budget ε is used up.

Let l be the maximal degree of order and let p be the number of vertices. The number

of rounds of conditionally independent adjacent set selections is bounded by l × p, which

is much less than the number of conditional independence tests. Hence, PrivPC requires a

much smaller privacy budget than the naive method for the same level of performance.

4.4.3 A Baseline Method (LapMech)

An improved method (LapMech) on the naive method is to add noise once on the

input datasetD. A basic contingency table contains adequate information ofD for all possible

conditional independence tests. We add Laplace noise Lap(0, 1/ε) on the basic contingency

table. Any following conditional independence test only engages with the protected basic

contingency table instead of original input dataset D. For each conditional independence test,

the corresponding contingency table can be directly summarized from the protected basic

contingency table. This algorithm only accesses the input data once. The basic contingency

44



table has a sensitivity of only 1, since one data point can change the count only by 1. We

use the LapMech method as the baseline against our PrivPC algorithm for evaluation.

However, the basic contingency table is computationally infeasible for high-dimensional

data or multiple-category variables. It suffers from over-fitting, as a large portion of value

combinations may not be observed in the dataset D. The size of basic contingency table is

p∏
i=1

Cati, which is larger than n in most cases. Moreover, summarizing the count numbersNij|k

from the basic contingency table to the corresponding contingency table is inefficient, and

it accumulates noises for small tables. Hence, it’s not an efficient way to achieve differential

privacy in this case.

Applying the exponential mechanism on conditionally independent adjacent set selec-

tion has more advantages over the baseline method (LapMech). Because it uses contingency

table, it doesn’t encounter the problems of oversize, over-fitting or accumulated noise. At

each round of conditionally independent adjacent set selection, it’s independent on the di-

mension p or number of categories. We expect our PrivPC algorithm has better performance

than the LapMech mechanism, especially in high-dimensional, complex cases.

4.5 Differentially Private Causal Graph Discovery Algorithm for Numerical

Data

In this section, we propose a differentially private PC (PrivPC*) algorithm for nu-

merical data.

When all nodes are random variables with the multivariate normal distribution, con-

ditional independence tests are inferred from partial correlations [85]. Kalisch and Buhlmann

[89] proposed a modified PC algorithm using partial correlation, which has an uniform con-

sistency for Gaussian samples.

45



PrivPC* revises the PC algorithm to achieves the differential privacy based on the

following procedure. Given a dataset D, we first calculate the covariance matrix Σ. Suppose

Σ has a lower triangular structure (as Σ is symmetric), with variance σ2
i on diagonal and

covariance Cov(Vi, Vj) off diagonal.

We then add Laplace noise to the covariance matrix Σ to ensure differential privacy.

The noise is randomly drawn from Lap(0, Sf (D)/ε). Based on the private covariance ma-

trix Σ̂, the output of any following conditionally independence test (Algorithm 2 Line 8)

between Vi and Vj given Vk is also differentially private, as it only queries the private the

covariance matrix Σ̂ instead of the input dataset D. Thus, differential privacy is ensure in

any transformation or query over the private covariance matrix Σ̂.

Using the private covariance matrix Σ̂ in PrivPC*: After we get the private

covariance matrix Σ̂, we convert the private Σ̂ to the private correlation matrix P̂ , where

ρ̂ij =
Ĉov(Vi, Vj)

σ̂iσ̂j
denotes the correlation between Vi and Vj. To calculate the partial cor-

relation ρ̂ij|k between Vi and Vj given Vk, we use the sub-correlation matrix with entries

from corresponding rows and columns and find the respective entries ρ̂−1
ij , ρ̂

−1
ii , ρ̂

−1
jj from the

inverse of the sub-matrix. The partial correlation ρ̂ij|k is calculated by

ρ̂ij|k = −
ρ̂−1
ij√

ρ̂−1
ii ρ̂

−1
jj

.

Then, we apply Fisher’s z-transform to get private test statistics Ẑ(ij|k):

Ẑ(ij|k) =
1

2
log

(
1 + ρ̂ij|k
1− ρ̂ij|k

)

Thus, the decision boundary on the conditional independence in Line 8 of Algorithm
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1 becomes:

“If
√
n− |Vk| − 3|Ẑ(ij|k)| ≤ Φ−1(1 − τ/2), then Vi and Vj are conditionally inde-

pendent on Vk”,

where n is the sample size; Φ is the CDF of N(0, 1); τ is the significance level.

Theorem 6. The PrivPC* algorithm achieves ε-differential privacy by applying the Laplace

mechanism on the covariance matrix Σ. The global sensitivity Sf (D) of the covariance matrix

Σ is
p(p+ 1)

2(n− 1)
.

Proof: We use xu to denote the u-th record in dataset D. We use xui to denote the

value of variable Vi in the u-th record (i = 1, 2, . . . , p). Suppose it follows standard normal

distribution xui ∼ N(0, 1).

Sf = ||Σ(D)− Σ(D′)||1

=

p∑
i=1


n∑
u=1

x2
ui

n− 1
−

n−1∑
u=1

x2
ui

n− 2

+

p∑
i=1

p∑
j=1


n∑
u=1

xuixuj

n− 1
−

n−1∑
u=1

xuixuj

n− 2



≤
p∑
i=1


n∑
u=1

x2
ui

n− 1
−

n−1∑
u=1

x2
ui

n− 1

+

p∑
i=1

p∑
j=1


n∑
u=1

xuixuj

n− 1
−

n−1∑
u=1

xuixuj

n− 1


=

p∑
i=1

(
x2
ni

n− 1

)
+

p∑
i=1

p∑
j=1

(
xnixnj
n− 1

)

=

2
p∑
i=1

x2
ni + 2

p∑
i=1

p∑
j=1

xnixnj

2(n− 1)
=

p∑
i=1

x2
ni +

(
p∑
i=1

xni

)2

2(n− 1)

≤
p+

(
p×

√
p

p

)2

2(n− 1)
=
p(p+ 1)

2(n− 1)

(4.5)
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where i 6= j,
p∑
i=1

x2
ni = p because σ2 =

p∑
i=1

x2
ni

p
= 1.

The global sensitivity Sf of Σ(D) is
p(p+ 1)

2(n− 1)
. When n is large, the added Laplace

noise would be relatively small. �

Compared to a basic contingency table, the correlation matrix has a much smaller size

(p× p). Hence, partial correlation test via the private covariance matrix Σ̂ doesn’t introduce

extra noise to test statistics, whereas the basic contingency table wastes privacy budget on

under-represented entries in its cells. Hence, it’s very plausible to add noise on the covariance

matrix for numerical data.

4.6 Experiments

In our experiments, we implement our private PC algorithms (PrivPC and PrivPC*)

based on the R-package pcalg [93]. The procedure of evaluating private PC algorithms against

non-private PC algorithm is shown as follows. First, we randomly generate 5 graphs G with

p nodes according to the maximal sparseness s =
number of edges in G

p(p− 1)/2
. Then, we generate

a dataset D with n records according to the causal graph G. After that, the non-private and

private PC algorithms are applied on the dataset D to estimate a CPDAG. For all conditional

independence tests used in our experiments, we restrict significance level to τ = 0.01. Finally,

we compare the true causal graph G and the estimated CPDAG to evaluate the performance

of the private PC algorithms. We evaluate the estimated CPDAG for the undirected skeleton.

Edge directions are not considered because they are decided in the second phase where the

PC algorithm doesn’t leak the privacy of the dataset D. The evaluation metrics used in our
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experiments are:

True Positive Rate (TPR) =
correctly found edges

true edges

False Positive Rate (FPR) =
misplaced edges

true gaps (no edge)

True Discovery Rate (TDR) =
correctly found edges

found edges

For TPR and TDR, the higher value indicates better performance. For FPR, the

lower value indicates better performance.

4.6.1 Categorical Data

To generate the categorical dataset D, we use TETRAD [94] to build causal graphs

according to dimension p and sparseness s. Each node is assigned as a categorical variable

with the number of category ranging from 2 to 5; then conditional probability tables corre-

sponding to the structure of G are constructed; finally, n samples are independently drawn

using the conditional probability tables. We evaluate the performance of PrivPC against

LapMech and the non-private PC algorithm under different parameter settings. Table 4.2

shows the parameter values, with the default values in bold. Table 4.3 to Table 4.6 show the

experimental results when one parameter varies and the others are fixed at default values.

We highlight the better values between LapMech and PrivPC.

Table 4.3 shows the performance of non-private PC, LapMech, and PrivPC algorithms

for different privacy budgets ε on categorical data. With ε = 10, both LapMech and PrivPC

have high TPR and TDR. However, the utility of LapMech is much less preserved than

that of PrivPC when a stronger privacy is enforced (smaller ε). For example, when ε = 1,
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Table 4.2: Experimental parameters and values for categorical data

Parameter Values

Privacy Budget ε 1, 3, 5, 10

Sample Size n 1k, 3k, 5k, 10k

Number of Nodes p 5, 10, 15

Sparseness s 0.2, 0.4, 0.6

Table 4.3: The experimental results for different privacy budgets ε on categorical data
(n = 10000, p = 10, s = 0.2)

ε Non-private PC LapMech PrivPC

10

TPR 1.000±0.000 0.862±0.060 0.896±0.136

FPR 0.006±0.012 0.011±0.016 0.006±0.012

TDR 0.980±0.045 0.960±0.055 0.980±0.044

5

TPR 1.000±0.000 0.742±0.117 0.873±0.125

FPR 0.006±0.012 0.012±0.017 0.006±0.013

TDR 0.980±0.045 0.960±0.055 0.980±0.045

3

TPR 1.000±0.000 0.748±0.108 0.841±0.121

FPR 0.006±0.012 0.018±0.017 0.017±0.025

TDR 0.980±0.045 0.940±0.055 0.940±0.089

1

TPR 1.000±0.000 0.613±0.157 0.817±0.206

FPR 0.006±0.012 0.105±0.024 0.073±0.035

TDR 0.980±0.045 0.640±0.089 0.740±0.134

LapMech loses 25% on TPR and 30% on TPR. Whereas the PrivPC only loses 10% and 20%

respectively. Hence, PrivPC is robust to different privacy budgets ε.

As mentioned in Section 4.4, PrivPC makes a much smaller number of edge elim-

ination decisions than the number of conditional independence tests in the original PC

algorithm. The number of edge elimination decisions and the number of conditional inde-

pendence tests are bounded by the dimension p and the maximal degree of order l. We

evaluate the performance of PrivPC over causal graphs with different dimensions p. Table

4.4 shows the results for different p. For p = 5, both LapMech and PrivPC have great util-
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Table 4.4: The experimental results for different numbers of nodes p on categorical data
(ε = 5, n = 5000, s = 0.2)

p Non-private PC LapMech PrivPC

5

TPR 1.000±0.000 1.000±0.000 1.000±0.000

FPR 0.025±0.056 0.025±0.056 0.025±0.056

TDR 0.933±0.149 0.933±0.149 0.933±0.149

10

TPR 1.000±0.000 0.738±0.158 0.884±0.121

FPR 0.011±0.015 0.035±0.036 0.023±0.013

TDR 0.960±0.055 0.880±0.130 0.920±0.045

15

TPR 0.990±0.022 0.455±0.174 0.815±0.128

FPR 0.019±0.016 0.181±0.080 0.053±0.021

TDR 0.926±0.061 0.227±0.093 0.798±0.073

Table 4.5: The experimental results for different sample sizes n on categorical data (ε =
5, p = 10, s = 0.2)

n Non-private PC LapMech PrivPC

10k

TPR 1.000±0.000 0.742±0.117 0.873±0.125

FPR 0.006±0.012 0.012±0.017 0.006±0.013

TDR 0.980±0.045 0.960±0.055 0.980±0.045

5k

TPR 1.000±0.000 0.738±0.158 0.884±0.121

FPR 0.011±0.015 0.035±0.036 0.023±0.013

TDR 0.960±0.055 0.880±0.130 0.920±0.045

3k

TPR 0.982±0.041 0.812±0.129 0.894±0.161

FPR 0.011±0.015 0.050±0.035 0.045±0.038

TDR 0.960±0.055 0.820±0.130 0.840±0.134

1k

TPR 1.000±0.000 0.836±0.157 0.812±0.077

FPR 0.049±0.021 0.140±0.033 0.101±0.032

TDR 0.820±0.084 0.440±0.152 0.620±0.130

ity. However, PrivPC outperforms LapMech significantly with increasing the dimension p

of G. For example, LapMech has only 45% on TPR and 22% on TDR when p = 15. On

the contrary, PrivPC has about 80% on both FPR and TDR. Furthermore, LapMech will

be infeasible for high-dimensional datasets (e.g., when p ≥ 20, the size of contingency table
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Table 4.6: The experimental results for different values of sparseness s on categorical data
(ε = 5, n = 5000, p = 10)

s Non-private PC LapMech PrivPC

0.2

TPR 1.000±0.000 0.738±0.158 0.884±0.121

FPR 0.011±0.015 0.035±0.036 0.023±0.013

TDR 0.960±0.055 0.880±0.130 0.920±0.045

0.4

TPR 1.000±0.000 0.886±0.080 0.774±0.062

FPR 0.069±0.055 0.129±0.062 0.084±0.041

TDR 0.866±0.100 0.741±0.121 0.846±0.092

0.6

TPR 1.000±0.000 0.877±0.113 0.809±0.073

FPR 0.464±0.066 0.503±0.048 0.280±0.081

TDR 0.328±0.165 0.266±0.160 0.764±0.118

is larger than
20∏
i=1

Cati). Therefore, PrivPC achieves much better utility when estimating a

high-dimensional causal graph.

In LapMech, the sensitivity of a contingency table is 1. In PrivPC, the sensitivities

of both distance score-based quality functions are also 1. As the sensitivities of LapMech

and PrivPC are all based on count numbers, we evaluate the performance of each algorithm

for different sample sizes n. Table 4.5 shows the experimental results for different sample

sizes n. We can observe that the sample size n of input data D has strong impact on the

performance of LapMech and PrivPC algorithm. When the sample size n = 10k, both

LapMech and PrivPC have enough data to reach good utility. When the sample size n drops

to 1k, all the results of LapMech and PrivPC drop significantly. However, comparing with

the LapMech which has only 44% on TDR, PrivPC achieves 62% on TDR. Thus, PrivPC

can achieve a better true discovery rate when the sample size n is small.

The maximal degree of order l of a causal graph G is related to the dimension p and

sparseness s. The maximal degree is roughly bounded by p × s. We further evaluate the
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PrivPC algorithm on causal graphs with various sparseness s. Table 4.6 shows the perfor-

mance with different sparseness s on categorical datasets. For a dense causal graph (s ≥ 0.6),

LapMech has a high FPR and low TDR as expected. Conversely, PrivPC has a much lower

FPR and higher TDR than LapMech. It even out-performs the non-private PC algorithm on

TDR. Thus, a dense causal graph discovery via PrivPC can achieve a better result in terms

of FPR and TDR.

We also compare the average processor time of LapMech and PrivPC. When n =

5000, p = 10, s = 0.2, LapMech has an average runtime of 111s, whereas PrivPC only needs

9s. As sparseness s or dimension p increases, the average runtime of LapMech becomes up to

1000 times worse than PrivPC. Hence, PrivPC requires a significantly less processor runtime

than LapMech.

Overall, PrivPC achieves much better utility than LapMech. Meanwhile, PrivPC is

also more robust to a smaller privacy budget ε, smaller sample size n, higher dimensional

or more dense graphs. The advantage of the conditionally independent adjacent set selec-

tion approach allows PrivPC to achieve a high true discovery rate when estimating a more

complex causal graph G. Additionally, PrivPC runs much faster than LapMech.

4.6.2 Numerical Data

To evaluate the performance of PrivPC*, we generate causal graphs G with different

p nodes and maximal sparseness s. Then, the numerical datasets D with n records are gen-

erated according to the given causal graphs G (with weights) with Gaussian distribution. We

implement our PrivPC* algorithm using Laplace mechanism. We evaluate the performance

of our PrivPC* algorithm against the non-private PC algorithm under different parameter

settings (Table 4.7).
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Table 4.7: Experimental parameters and values for numerical data

Parameter Values

Privacy Budget ε 0.01, 0.1, 1, 10

Sample Size n 100, 1000, 10000

Number of Nodes p 10, 20, 50, 100

Sparseness s 0.1, 0.4, 0.7

Table 4.8: The experimental results for different privacy budgets ε on numerical data (n =
10000, p = 10, s = 0.4)

ε Non-private PC PrivPC*

10

TPR 0.975±0.056 0.975±0.056

FPR 0.094±0.096 0.094±0.096

TDR 0.851±0.129 0.851±0.129

1

TPR 0.975±0.056 0.975±0.056

FPR 0.094±0.096 0.087±0.102

TDR 0.851±0.129 0.865±0.143

0.1

TPR 0.975±0.056 0.789±0.056

FPR 0.094±0.096 0.187±0.093

TDR 0.851±0.129 0.688±0.111

0.01

TPR 0.975±0.056 0.516±0.383

FPR 0.094±0.096 0.373±0.062

TDR 0.851±0.129 0.113±0.116

Table 4.8 to Table 4.11 show the experimental results when one parameter varies and

the others are fixed at default values. We highlight the values on which PrivPC* has no

significant difference from the non-private PC.

Table 4.8 shows the performance for different privacy budgets ε on the same numerical

datasets. With ε = 1 or higher, the PrivPC* algorithm achieves good performance on all

three metrics (no significant differences between non-private and private PC algorithms).

With the smaller privacy budget ε = 0.1 or 0.01, the utility of PrivPC* decreases as the

trade-off for a stronger privacy. Hence, PrivPC* achieves a good utility with privacy budget
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Table 4.9: The experimental results for different sample sizes n on numerical data (ε =
1, p = 10, s = 0.4)

n Non-private PC PrivPC*

10000

TPR 0.975±0.056 0.975±0.056

FPR 0.094±0.096 0.087±0.102

TDR 0.851±0.129 0.865±0.143

1000

TPR 1.000±0.000 0.932±0.075

FPR 0.140±0.096 0.196±0.082

TDR 0.746±0.153 0.632±0.126

100

TPR 1.000±0.000 0.433±0.435

FPR 0.255±0.058 0.372±0.064

TDR 0.463±0.060 0.081±0.091

Table 4.10: The experimental results for different numbers of nodes p on numerical data
(ε = 1, n = 10000, s = 0.4)

p Non-private PC PrivPC*

10

TPR 0.975±0.056 0.975±0.056

FPR 0.094±0.096 0.087±0.102

TDR 0.851±0.129 0.865±0.143

20

TPR 0.886±0.035 0.853±0.048

FPR 0.299±0.024 0.297±0.025

TDR 0.388±0.028 0.401±0.050

50

TPR 0.819±0.043 0.785±0.082

FPR 0.374±0.009 0.378±0.012

TDR 0.112±0.008 0.094±0.019

100

TPR 0.836±0.025 0.712±0.060

FPR 0.393±0.008 0.397±0.008

TDR 0.039±0.008 0.023±0.004

ε ≥ 1. Therefore, PrivPC* has reasonable utility for stronger privacy restriction.

Because the sensitivity of covariance matrix ΣD in PrivPC*
p(p+ 1)

2(n− 1)
is a function

about n and p, we evaluate our PrivPC* algorithm against non-private algorithm over differ-

ent sizes n of D and dimensions p of G. Table 4.9 shows the experimental results for different
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Table 4.11: The experimental results for different values of sparseness s on numerical data
(ε = 1, n = 10000, p = 20)

s Non-private PC PrivPC*

0.1

TPR 0.918±0.080 0.701±0.193

FPR 0.004±0.003 0.004±0.003

TDR 0.971±0.027 0.971±0.027

0.4

TPR 0.886±0.035 0.853±0.048

FPR 0.299±0.024 0.297±0.025

TDR 0.388±0.028 0.401±0.050

0.7

TPR 0.803±0.102 0.789±0.078

FPR 0.684±0.039 0.688±0.028

TDR 0.190±0.030 0.179±0.029

sample sizes n. For datasets with sample size n = 1000 or larger, PrivPC* can achieve as

good utility as the non-private PC algorithm. When n is very small (e.g., n = 100), the effect

of noise is magnified, so the performance of PrivPC* significantly decreases.

Table 4.10 shows the performance for different p-dimensional causal graphs. In the

low dimensional setting, the PrivPC* algorithm can achieve as good utility as non-private

algorithm. In the high dimensional setting (p = 50 or more), the TDR of both non-private

and private PC algorithms are very low. When p = 100, the TPR of PrivPC* is significantly

lower than the non-private PC algorithm. As we expected from the sensitivity, the utility of

our algorithm will be compromised under a large p or small n. Yet, PrivPC* still achieves

good performance in a wide range of cases (n ≥ 1000, p ≤ 50).

The sparseness s is another essential parameter of a causal graph other than the

dimension p. We evaluate PrivPC* on causal graphs with same dimension but different

sparseness. Table 4.11 shows the performance for different sparseness s. For a dense causal

graph (s ≥ 0.4), the PrivPC* algorithm has as good utility as non-private algorithm. How-

ever, for a very sparse causal graph s = 0.1, the PrivPC* algorithm has a lower TPR than
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(a) Estimated CPDAG by Non-private PC

(b) Estimated CPDAG by PrivPC

Figure 4.1: Case analysis on the UCI Adult dataset (ε = 10, n = 48842, p = 14)

the non-private algorithm.

Overall, PrivPC* using Laplace mechanism on Gaussian data achieves a consistently

good utility and robustness for most experiment settings.

4.6.3 Case Analysis on the UCI Adult Dataset

We further conduct experiments on the UCI Adult datset [95] which is made up of

census data. The Adult dataset consists of 48842 records with 14 attributes such as age, edu-

ation, sex, occupation, income, etc.. The computational complexity of the PC algorithm is an

exponential function of the number of attributes and their domain sizes. For computational
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feasibility we discretize each attribute’s domain values into two to four categories to reduce

the domain sizes. There’s no “true graph” of Adult dataset. We apply the non-private PC

algorithm to get an estimated CPDAG (shown in Figure 4.1a) and use it as the approximate

true graph G; then we apply the PrivPC algorithm to get a differentially private estimated

CPDAG Ĝ (shown in Figure 4.1b) and compare it to G.

We assume the estimated CPDAG by the non-private PC algorithm is identical to

the true graph G. This approximate true graph G has 31 edges. The estimated CPDAG Ĝ by

the PrivPC algorithm has 28 edges. Most causal relationships discovered by the non-private

algorithm are also captured by PrivPC. PrivPC achieves 78.6% on TPR, 14.3% on FPR,

and 71.0% on TDR. Hence, the PrivPC algorithm is also effective on the real dataset.

4.7 Summary

In this work, we studied how to preserve differential privacy in constraint-based causal

graph discovery. The naive differentially private PC algorithm requires a large privacy budget

since it adds protection at each conditional independence test. To solve this problem, we de-

veloped a differentially private PC algorithm (PrivPC) based on the exponential mechanism.

Because PrivPC reduces the number of edge elimination decisions, it reduces the required

privacy budget significantly. The proposed PrivPC algorithm is robust over a wide range of

parameter settings. Moreover, the conditionally independent adjacent set selection strategy

achieves high true discovery rates for high-dimensional and dense causal graphs. Meanwhile,

we also developed a Laplace mechanism based differentially private PC algorithm (PrivPC*)

for numerical data. The experimental results also showed that our algorithm has good per-

formance. The early version of this work is published at IEEE PAC 2017 [96].
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5 Differentially Private Network Embedding

5.1 Introduction

Network embedding learns the lower dimensional representations of the vertices in a

high-dimensional social network [97]. The latent representations encode the social relations

in a continuous vector space, which can be used to conduct a variety of applications such

as vertex classification and link prediction. The first network embedding model, DeepWalk

[24], uses the sequences of vertices generated by random walks to learn the vertex represen-

tations. It adopts SkipGram [98], which was previously used to learn word representations

in natural language processing. Several models based on the neural language model have

been proposed, such as node2vec [99], Discriminative Deep Random Walk (DDRW) [100],

Large-scale Information Network Embedding (LINE) [25] and Signed Network Embedding

(SNE) [101].

However, releasing the representations of vertices in a social network gives malicious

attackers a potential way to infer the sensitive information of individuals. For example, the

widely-used network embedding methods like DeepWalk [24] and LINE [25] train the vertex

representations based on the linkage information between vertices. Hence, the released vertex

representations may potentially breach link privacy of social network users. Currently, it is

under-exploited how to preserve differential privacy in network embedding. In this work, we

aim to ensure no “privacy loss” in case of the inclusion or exclusion of an edge between two

vertices from a network, a.k.a. link privacy.

In DeepWalk, the inputs of the two embedding models are generated by random walks

and edge sampling. The objective function derived from random walks has an uncertain and
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complex mapping from edges. Edge sampling directly discloses the presence or absence of

an edge between a vertex pair, which leads to a high sensitivity for privacy protection.

Thus, it is difficult to directly incorporate well-studied differential privacy mechanisms [8,

44] onto DeepWalk. Meanwhile, the matrix factorization based method, which is proven to

be equivalent to DeepWalk, learns representations through factorizing a matrix with the

pointwise mutual information of the vertices pairs in a network. It is convenient to achieve

differential privacy in network embedding via small perturbation on matrix factorization.

In this work, we focus on developing a differential privacy preserving method of net-

work embedding based on the equivalent matrix factorization method. We propose a dif-

ferentially private network embedding method (DPNE). In this method, we leverage the

findings that network embedding methods such as DeepWalk and LINE are equivalent to

factorization of some matrices derived from the adjacency matrix of the original network

and apply objective perturbation on the objective function of matrix factorization. We show

that with only adding a small amount of noise onto the objective function, the learned low-

dimensional representations satisfy differential privacy. Experimental results show that the

embedded representations learned by DPNE achieve good utility with a small privacy budget

on both vertex classification and link prediction tasks.

5.2 Related Work

Network Embedding The traditional network embedding methods [102] [103] [104]

don’t scale well for real world large information networks. Graph Factorization [105] uses

a streaming algorithm for graph partitioning to improve factorization based embedding

method. Word2vec [98] is an efficient tool using SkipGram to learn the representations of

words in natural language processing tasks. There are several models based on the neural lan-
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guage model: DeepWalk [24], node2vec [106], Discriminative Deep Random Walk (DDRW)

[100], Deep Graph Kernels [107] and Large-scale Information Network Embedding (LINE)

[25].

5.3 Preliminaries

For general preliminaries of differential privacy, please refer to Chapter 3.1.

Network Embedding. A social network is defined as G = (V , E), where V is a set

of vertices and E is the set of edges. We use vi to denote a vertex, and we use eij to denote

an edge between a pair of vertices vi and vj. The goal of the network embedding is to learn

the low-dimensional representations X ∈ R|V|×k for all vertices in V , where k � |V|. The

i-th row of X (denoted as xi) is the k-dimensional latent representation of vertex vi.

DeepWalk. DeepWalk adopted SkipGram [98], which was previously used to learn

word representations, to learn vertex representations according to the network structure.

DeepWalk first generates short random walks for each vertex. Then the model uses the

sequences of vertices S generated by random walks as the input of SkipGram function to

learn the vertex representations. In particular, for each target vertex vi ∈ V and a context

vertex vj within t window size of vi in a walk sequence (vj ∈ Ci = {vi−t, . . . , vi+t} \ {vi}),

DeepWalk optimizes the co-occurrence probability between vi and its context vertices within

S:

L(S) =
1

|S|
∑
vi∈S

∑
vj∈Ci

log Pr(vj|vi), (5.1)

where the probability function Pr(vj|vi) is defined by the softmax function:

Pr(vj|vi) =
exp(xiy

T
j )∑

vj′∈Vc
exp(xiyTj′)

, (5.2)
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where xi and yj are the k-dimensional representations of the target vertex vi and the context

vertex vj, respectively; and Vc denotes the set of context vertices.

DeepWalk as Matrix Factorization. DeepWalk using SkipGram with Negative

Sampling (SGNS) has been proven that it is equivalent to factorize a matrix M derived from G

M
|V|×|Vc|

= W
|V|×k

HT

k×|Vc|
[37]. The factorized matrices W,H are equivalent to the vertex/context

representations, as wi = xi and hj = yj. Each value mij in M represents logarithm of the

average probability that vertex vi randomly walks to vertex vj within fixed t steps. Formally,

mij is defined as:

mij = log
[Ii(P + P2 + · · ·+ Pt)]j

t
, (5.3)

where P is the transition matrix of G with pij =
1

di
if eij ∈ E ; di is the degree of vi in G; and

Ii denotes an indicator vector, in which the i-th entry is 1 and the others are all 0.

Hence, we formalize the DeepWalk as matrix factorization M = WHT . Let Ω be the

set of vertex pairs referenced by each entry mij of M. The model aims to find matrices W

and H to minimize the objective function as follows:

L(wi,hj,G) =
∑

(i,j)∈Ω

||mij −wih
T
j ||22 + λ

∑
i∈V

||wi||22 + µ
∑
j∈Vc

||hj||22, (5.4)

where λ and µ are the weights of regularization terms.

We adopt the stochastic gradient descent (SGD) approach to minimize Equation 5.4.

SGD iteratively learns W and H. The partial derivatives of L(wi,hj,G) with respect to wi

and hj are as follows:

5wi
L(wi,hj,G) = −2

∑
j∈Vc

hj(mij −wih
T
j ), (5.5)
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5hj L(wi,hj,G) = −2
∑
i∈V

wi(mij −wih
T
j ). (5.6)

5.4 Differentially Private Network Embedding

In this section, we describe the differentially private network embedding method

(DPNE) based on the matrix factorization approach to achieve differential privacy in network

embedding.

5.4.1 Differentially Private Network Embedding (DPNE)

DPNE adopts the objective perturbation mechanism on matrix factorization to pro-

tect the individual’s link privacy in the social network. Note that M represents logarithm of

the average probability that one vertex randomly walks to another vertex within fixed steps.

When an edge eij in G is added or removed, the entire entries in M are changed accordingly.

Hence, although there are some works [108] to protect the privacy in terms of a value in a

matrix, it is not straightforward to adapt the existing models to our scenario. We need to

derive the scale of the objective function in terms of changing one edge in G.

In DPNE, we define the perturbed objective function of matrix factorization in Equa-

tion 5.4 as follows:

Lpriv(wi,G) =
∑

(i,j)∈Ω

||mij −wih
T
j ||22 + λ

∑
i∈V

||wi||22 + µ
∑
j∈Vc

||hj||22 +
∑
i∈V

wiη
T
i , (5.7)

where N = [ηi]|V|×k is a noise matrix with each row ηi of N as a k-dimensional noise vector.

In practice, the context representation matrix H is kept confidential. We first minimize

Equation 5.4 to update H, then fix H and learn W by minimizing Equation 5.7. Hence, W

is the only matrix variable in Equation 5.7.
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Theorem 7. Let M be a matrix where each of its entry mij is defined by Equation 5.3. Let ηi

in Equation 5.7 be a k-dimensional noise vector that is independently and randomly picked for

each vertex vi from the density function Pr(ηi) ∝ exp(−ε||ηi||
2∆

), where ∆ = max ||M′−M||.

The derived Ŵ = arg minW Lpriv(wi,G) by minimizing Equation 5.7 satisfies ε-differential

privacy.

Proof. Let G and G ′ be two neighboring graphs differing by one edge, where G = (V , E),

G ′ = (V , E ′), E ′ = E
⋃
{ers}. Let M and M′ be two matrices derived from G and G ′ following

Equation 5.3. Let N and N′ be the noise matrices in Equation 5.7 when training with G and

G ′. Meanwhile, Lpriv(wi,G) is differentiable anywhere.

Let W̄ = arg minW Lpriv(wi,G) = arg minW Lpriv(wi,G ′), we have that ∀vi ∈ V ,

5wi
Lpriv(w̄i,G) = 5wi

Lpriv(w̄i,G ′) = 0. Thereby,

ηi − 2
∑
j∈Vc

hj(mij − w̄ih
T
j ) = η′i − 2

∑
j∈Vc

hj(m
′
ij − w̄ih

T
j ); (5.8)

We can derive from Equation 5.8 that:

ηi − η′i = 2
∑
j∈Vc

hj(m
′
ij − w̄ih

T
j )− 2

∑
j∈Vc

hj(mij − w̄ih
T
j ) = 2

∑
j∈Vc

hj(mij −m′ij);

∑
i∈V

(ηi − η′i) = 2
∑
i∈V

∑
j∈Vc

hj(mij −m′ij);

We normalize ||hj|| ≤ 1. Since ||M′ −M|| ≤ ∆, we have ||N−N′|| ≤ 2∆ regardless
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of H. Then for G and G ′,

Pr[W = W̄ |G]

Pr[W = W̄ |G ′]
=

∏
i∈V

Pr(ηi)∏
i∈V

Pr(η′i)
= exp(−

ε(
∑
i∈V
||ηi|| −

∑
i∈V
||η′i||)

2∆
)

≤ exp(−ε(||N−N′||)
2∆

) ≤ exp(ε).

(5.9)

The above proof also holds when we use
∣∣∑

vi∈V wiη
T
i

∣∣ as the noise term in the

perturbed objective function. In our implementation, we use the absolute noise term to get a

better performance on the optimization. Next, we show the upper bound of max ||M′−M||,

which will be used for adding noise to the objective function.

Lemma 1. The L2-sensitivity of M is max ||M′ −M|| ≤
√

2.

Proof. The worst case for any t is when E = ∅ in G and E ′ = {ers} in G ′. To find the bound

of max ||M′ −M|| under the worst case, we have, for i = 1, 2, · · · , t, P′i − Pi is

0 1

1 0


and

1 0

0 1

 repeatedly. Hence, ||P′t−Pt|| = ||P′−P||. When window size t = 1 under the

worst case, ||M′ −M|| ≤
√

2. When window size t ≥ 2 (still under the worst case),

max ||M′ −M||
(t≥2)

=

∣∣∣∣∣∣∣∣P′ + . . .+ P′t

t
− P + . . .+ Pt

t

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣(P′ −P) + . . .+ (P′t −Pt)

t

∣∣∣∣∣∣∣∣
≤

t∑
i=1

∣∣∣∣∣∣∣∣(P′i −Pi)

t

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣t(P′ −P)

t

∣∣∣∣∣∣∣∣ = max ||M′ −M||
(t=1)

.

(5.10)
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To understand the worst case, we think about the physical meaning of M′ −M. M

represents all the t-step random walks generated from G and M′ represents all the t-step

random walks generated from G ′. M′ −M captures those walks that go through ers. Take

the case where the original network G has no edges and we add edge ers. The set of random

walks from G is ∅. The set of random walks from G ′ are all ers. The proportional change in

M is maximum. Hence, it is the worst case where E = ∅ in G and E ′ = {ers} in G ′. This is

true for any |V| and any t. In such worst case, the bound of max ||M′ −M|| is
√

2.

5.4.2 DPNE vs. Other DP-preserving Embedding Approaches

A naive way to achieve differential privacy in network embedding is to get a dif-

ferentially private matrix M (dpM) and then to apply matrix factorization, where M is

calculated with the transition matrix P and its powers Pt. To get a differentially private

matrix M, we can use the Laplace mechanism to add a noise matrix N on M, where

each entry nij of N is drawn i.i.d. from Lap(Sf (G)/ε), let Sf (G) be the sensitivity of M,

Sf (G) = max ||M′ −M|| ≤
√

2. The worst case for ||M′ −M|| is when adding an edge to

two isolated vertices in G. We will use dpM as a baseline in our empirical evaluation.

Another way to achieve differential privacy in network embedding is to enforce dif-

ferential privacy in the process of network embedding models. Let D be a vertex-context set

generated from the random walk sequences, where each member of D is a vertex-context

pair (vi, vj). For a “walk step” from vi to vj in random walks, it is uncertain how many

times in total the same “walk step” appears in D. For example, the number of times that

an edge eij gets walked through by all the random walks sequences has the upper bound∑min{b,dloga |V|e}
i=0 ai × c × (b − i), where a is the maximal degree of G, b is the walk length, c

is the number of walks starting at each vertex. Stochastic Gradient Descent (SGD) is used
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in SkipGram to learn the embedding vectors based on the objective function. The input for

SGD is the vertex-context set D. Although there are existing works on how to apply objective

perturbation [8] or exponential mechanism [44] on SGD to make private updates, the privacy

of D and the privacy of G are not the same. For example, if we want to apply the functional

mechanism [4] on DeepWalk with hierarchical softmax [24], in terms of the privacy of D,

the hierarchical softmax function iterates one time over each vertex-context pair in D; the

sensitivity of the hierarchical softmax function on D is about dlog2 |V|e (k/2 + k2/8). But in

terms of the privacy of G, for each edge in G, the hierarchical softmax function iterates an

unset number of times; thus, the sensitivity of the hierarchical softmax function on G is very

large after multiplying the iteration times.

Also, negative sampling is used for SkipGram function in DeepWalk or LINE. The

processes of positive sampling and negative sampling already indicate link privacy. It is

viable to make the sampling process private by applying the exponential mechanism [2] or

the Laplace mechanism [1]. However, the sensitivity of edge sampling domain is also large.

Hence, it is challenging to intuitively apply the existing differentially private approaches in

DeepWalk to achieve privacy protection on G.

The equivalent matrix factorization approach avoids random walks and negative sam-

pling. The effect of window size in DeepWalk is expressed as the powers of the transition

matrix. It considers the expected times that the vertex pairs appear rather than the ran-

domly generated times. It is more convenient to apply differential privacy mechanisms on

the matrix factorization based network embedding method. The only remaining challenge is

to bridge the “gap” between the privacy of D and the privacy of G. Theorem 7 addresses

this problem.
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5.5 Experiments

In this section, we evaluate the performance of DPNE on two tasks: vertex classifica-

tion and link prediction. For vertex classification, we predict the label of each vertex in the

network by using vertex embeddings as inputs to build a classifier. For link prediction, we

aim to use vertex embeddings to predict whether there is an edge between two vertices.

Baselines. We compare our differentially private network embedding method (

DPNE) with the naive method ( dpM) and the non-private network embedding as matrix

factorization method ( non-priv).

Datasets. We adopt the following three datasets to evaluate the proposed model.

1) Wiki contains 2,405 documents from 19 classes and 17,981 links between them. 2) Cora

is a research paper set which contains 2,708 machine learning papers from 7 classes and

5,429 links between them. 3) Citeseer is another research paper set which contains 3,312

publications from 6 classes and 4,732 links between them.

Parameter Settings. In our experiments, we set the window size t = 2 and M =

(P + P2)/2. For all three datasets, we choose a series of values for the embedding size

k = {10, 20, 50, 100, 200, 500, 1000} for vertex representations, and a series of values for

the privacy budget ε = {0.01, 0.1, 1, 10, 100, 1000}. We set the regularization coefficients

λ = µ = 0.001 and the learning rate γ = 0.015. The train ratios of SVM and logistic

regression in the two tasks are both 10%. For each parameter setting, we report the average

result over 10 different runs.
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Table 5.1: Comparing the accuracy for vertex classification with different privacy budget ε
[non-priv: (a) Wiki 0.555 (b) Cora 0.700 (c) Citeseer 0.505]

Dataset (a) Wiki (b) Cora (c) Citeseer
ε dpM DPNE dpM DPNE dpM DPNE

0.01 0.094 0.093 0.187 0.181 0.179 0.178
0.1 0.091 0.096 0.189 0.213 0.182 0.186
1 0.088 0.521 0.190 0.662 0.177 0.452
10 0.090 0.527 0.196 0.669 0.180 0.459
100 0.355 0.537 0.500 0.677 0.311 0.466
1000 0.545 0.552 0.679 0.700 0.497 0.490

5.5.1 Vertex Classification Task

For the vertex classification task, we first get the vertex representation W based on

the matrix factorization method. Then, we train a multi-class support vector machine (SVM)

on a training dataset L based on a subset of vertex representations WL and further predict

the labels of a testing dataset U by the SVM classifier based on W\WL.

5.5.1.1 Different Privacy Budgets

We evaluate the performance of two private algorithms on all three datasets with

embedding size k = 100 and different privacy budgets ε. Table 5.1 shows the comparison

results of each method for vertex classification on three datasets. We can observe that both

DPNE and dpM have the similar trend on three datasets in terms of accuracy while we

increase the privacy budget. The classification results of DPNE are close to the non-private

method when ε ≥ 1. However, the performance of dpM method has a big improvement when

ε ≥ 100. It indicates that, compared with dpM, DPNE can achieve the same performance

with a much smaller privacy budget. Meanwhile, when the ε ≤ 0.1, both private methods have

poor performance. It indicates that when the privacy budget is low, the matrix factorization

method cannot be converged due to the large noisy injected to the objective function or
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Table 5.2: Comparing the accuracy for vertex classification with different embedding size k
and privacy budget ε (dataset=Wiki)

kε
non-priv DPNE

0.01 0.1 1 10 100 1000
10 0.324 0.080 0.108 0.255 0.265 0.272 0.350
20 0.466 0.072 0.095 0.420 0.428 0.429 0.457
50 0.537 0.080 0.087 0.526 0.520 0.515 0.539
100 0.555 0.093 0.096 0.521 0.527 0.537 0.552
200 0.530 0.096 0.101 0.470 0.511 0.515 0.539
500 0.474 0.105 0.110 0.285 0.437 0.424 0.482
1000 0.429 0.109 0.112 0.169 0.270 0.295 0.405

matrix itself.

5.5.1.2 Different Embedding Sizes

Based on Equation 3.6, ηi increases with embedding size k. There is potentially a

compromised performance of DPNE at a larger k. We evaluate the performance of the DPNE

algorithm on the Wiki dataset with different embedding size k and privacy budget ε. For

non-priv, as shown in the second column of Table 5.2, the highest accuracy 55.5% is achieved

when k = 100. When increasing or decreasing embedding size k, the accuracy decreases. For

DPNE, with relatively large privacy budget, ε = 10, 100, 1000, high accuracy is also achieved

when k = 100. When ε = 1, high accuracy is achieved when k = 50. However, with very

small privacy budget, ε = 0.01, 0.1, DPNE has significantly lower accuracy comparing to

non-priv no matter how we choose k.

5.5.2 Link Prediction Task

For the link prediction task, we first use vertex representations to compose edge

representations. Given a pair of vertices vi, vj connected by an edge, we use an Hadamard

operator to combine the vertex vectors wi and wj to compose the edge vector êij = wi ∗wj
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Table 5.3: Comparing the accuracy for link prediction under different privacy budget ε
[non-priv: (a) Wiki 0.734 (b) Cora 0.697 (c) Citeseer 0.699]

Dataset (a) Wiki (b) Cora (c) Citeseer
ε dpM DPNE dpM DPNE dpM DPNE

0.01 0.502 0.520 0.501 0.532 0.498 0.535
0.1 0.502 0.524 0.501 0.541 0.501 0.523
1 0.503 0.743 0.500 0.698 0.503 0.690
10 0.527 0.713 0.552 0.673 0.566 0.666
100 0.708 0.720 0.729 0.666 0.751 0.662
1000 0.725 0.725 0.706 0.703 0.695 0.696

[106]. Then, we use the constructed edge vectors as inputs to train a logistic regression

classifier and adopt the classifier to predict the presence or absence of an edge.

5.5.2.1 Different Privacy Budgets

We evaluate the performance of two private algorithms on three datasets for link

prediction with embedding size k = 100 and different privacy budgets ε. Table 5.3 shows the

link prediction accuracy of DPNE and dpM. We observe that when ε ≤ 0.1, both private

algorithms have only about 50% accuracy on three datasets. The accuracy of DPNE has a

big improvement while ε increases to 1. However, dpM achieves the comparable results when

the ε ≥ 100. It indicates DPNE can achieve better performance with a small privacy budget.

5.5.2.2 Different Embedding Sizes

We also evaluate the performance of the DPNE algorithm on the Wiki dataset with

different embedding size k and privacy budget ε. Table 5.4 shows our result. For non-priv, it

achieves the highest accuracy 74.7% when k = 200. For DPNE, it often achieves the highest

accuracy with k = 200 for large privacy budget values and with k = 1000 for small privacy

budget values. More interestingly, DPNE outperforms non-priv at large k for ε = 10 or 100.

71



Table 5.4: Comparing the accuracy for link prediction with different embedding size k and
privacy budget ε (dataset=Wiki)

kε
non-priv DPNE

0.01 0.1 1 10 100 1000
10 0.607 0.499 0.552 0.614 0.612 0.609 0.605
20 0.648 0.500 0.538 0.661 0.650 0.654 0.649
50 0.717 0.510 0.525 0.718 0.694 0.695 0.718
100 0.734 0.520 0.524 0.743 0.713 0.720 0.725
200 0.747 0.532 0.541 0.763 0.734 0.741 0.746
500 0.670 0.550 0.566 0.733 0.778 0.721 0.695
1000 0.650 0.568 0.595 0.698 0.784 0.726 0.679

5.6 Summary

In this work, we developed a differentially private network embedding method (DPNE)

based on DeepWalk as matrix factorization. We applied the objective perturbation approach

on the objective function of matrix factorization. Our evaluation shows that on both vertex

classification and link prediction tasks our DPNE achieves satisfactory performance. The

early version of this work is published at PAKDD 2018 [109].
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6 Achieving Fair Data Generation and Classification through Generative

Adversarial Networks

6.1 Introduction

Fairness-aware learning is increasingly important in data mining. Discrimination pre-

vention aims to prevent discrimination in the training data before it is used to conduct the

predictive analysis. In this paper, we first focus on fair data generation that ensures the

generated data is discrimination free. Inspired by generative adversarial networks (GAN),

we present fairness-aware generative adversarial networks, called FairGAN, which are able

to learn a generator producing fair data and also preserving good data utility. Another task

that is equally important in fair machine learning is how to build fair classifiers. We also

propose FairGAN+ to address both tasks simultaneously. In addition to releasing fair data,

FairGAN+ can also produce a classifier that makes guaranteed fair predictions. Inspired by

ACGAN, we incorporate a classifier into the FairGAN+ structure. The classifier learns to

predict labels based on the unprotected attribute. Experiments on a real dataset show the

effectiveness of FairGAN and FairGAN+.

6.2 FairGAN

For general preliminaries of fairness-aware machine learning and generative adversar-

ial networks, please refer to Chapter 3.2 and Chapter 3.3, respectively.

FairGAN aims to generate a fair dataset which achieves the statistical parity w.r.t

the protected attribute.

FairGAN consists of one generator G and two discriminators D1 and D2. We adopt
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Figure 6.1: The structure of FairGAN

the revised generator from medGAN [81] to generate both discrete and continuous data.

Figure 6.1 shows the structure of FairGAN. In FairGAN, every generated sample has a

corresponding value of the protected attribute s ∼ P (S). The generator G generates a fake

pair (x̂, ŷ|S) ∼ PG(X, Y |S). The discriminator D1 is trained to distinguish between the real

data from Pdata(X, Y, S) and the generated fake data from PG(X, Y, S).

Meanwhile, in order to make the generated dataset achieve fairness, a constraint is

applied to the generated samples, which aims to keep PG(X, Y |S = 1) = PG(X, Y |S = 0).

Therefore, another discriminator D2 is incorporated into the FairGAN model and trained to

distinguish the two categories of generated samples, PG(X, Y |S = 1) and PG(X, Y |S = 0).

The value function of the minimax game is described as:

min
G

max
D1,D2

V (G,D1, D2) = V1(G,D1) + λV2(G,D2), (6.1)
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where

V1(G,D1) =Es∼P (S),(x,y)∼Pdata(X,Y |S)[logD1(x, y, s)]

+ Es∼P (S),(x̂,ŷ)∼PG(X,Y |S)[log(1−D1(x̂, ŷ, s))],

(6.2)

V2(G,D2) = E(x̂,ŷ)∼PG(X,Y |S=1)[logD2(x̂, ŷ)] + E(x̂,ŷ)∼PG(X,Y |S=0)[log(1−D2(x̂, ŷ))], (6.3)

λ is a hyperparameter that specifies a trade off between utility and fairness of data generation.

The first value function V1 is similar to a conditional GAN model [110], where the

generator G seeks to learn the joint distribution PG(X, Y |S) over real data Pdata(X, Y |S).

The second value function V2 aims to make the generated samples not encode any information

supporting to predict the value of protected attribute S. Therefore, D2 is trained to correctly

predict S given a generated sample while the generator G aims to fool the discriminator D2.

Once the generated sample {x̂, ŷ} cannot be used to predict the protected attribute, the

correlation between {x̂, ŷ} and S is removed, i.e., {x̂, ŷ} ⊥ S. FairGAN can ensure that the

generated samples do not have the disparate impact.

6.3 FairGAN+

FairGAN+ aims to simultaneously achieve fair data generation and fair classification

through the GAN architecture. For fair data generation, we consider statistical fairness

and/or ε-fairness. For fair classification, we consider demographic parity, equality of odds

and/or equality of opportunity.
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Figure 6.2: The structure of FairGAN+

6.3.1 Model Framework

FairGAN+ consists of one generatorG, one classifier η and three discriminatorsD1,D2

and D3. Figure 6.2 shows the structure of FairGAN+. In FairGAN+, each generated sample

G(z) has a corresponding value pair of the protected attribute s ∼ Pdata(S) and the class

label y ∼ Pdata(Y ). The generatorG(z) generates fake x̂ following the conditional distribution

PG(X|Y, S) given a noise variable z. We adopt the revised generator from medGAN [81] so the

generator G(z) can generate both discrete and continuous data. The classifier η : X → Y

outputs the prediction η(X) from X. The prediction η(X) is trained to both accurately

predict the label Y and be free from discrimination. The discriminator D1 is trained to

distinguish between the real data from Pdata(X, Y, S) and the generated fake data from

PG(X, Y, S). The generator plays adversarial game with D1 to generate close-to-real fake

data. The discriminator D2 is trained to distinguish values of the protected attribute of each

sample, PG(X, Y |S = 1) and PG(X, Y |S = 0). D2 works like a fairness constraint to data
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generation. The generator plays another adversarial game with D2 so the generated data

satisfy fairness notions in data. The discriminator D3 is trained to distinguish values of the

protected attribute from the predictions made by η, P (η(X) = 1|S = 1) and P (η(X) =

1|S = 0). D3 works like a fairness constraint to classification. The classifier plays adversarial

game with D3 so its predictions satisfy fairness notions in classification.

The objective function of FairGAN+ is J = V +L, where V is the value function of the

overall minimax games between generator, classifier and discriminators; L is the objective

function of the classifier.

The value function V of the overall minimax game is described as:

min
G,η

max
D1,D2,D3

V (G, η,D1, D2, D3) = V1(G,D1) + λV2(G,D2) + µV3(η,D3),

where

V1(G,D1) =Es∼P (S),y∼P (Y ),x∼Pdata(X|Y,S)[logD1(x, y, s)]

+ Es∼P (S),y∼P (Y ),x̂∼PG(X|Y,S)[log(1−D1(x̂, y, s))],

(6.4)

V2(G,D2) = Ey∼P (Y ),x̂∼PG(X|Y,S=1)[logD2(x̂, y)] + Ey∼P (Y ),x̂∼PG(X|Y,S=0)[log(1−D2(x̂, y))],

(6.5)

V3(η,D3) = Ex∼P (X|Y,S=1)[logD3(η(x))] + Ex∼P (X|Y,S=0)[log(1−D3(η(x))], (6.6)

λ is a hyperparameter that specifies a trade-off between data utility and fairness of data

generation, µ is a hyperparameter that specifies a trade-off between classification accuracy

and classification fairness of η.
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The first two value functions V1, V2 are similar to the ones in FairGAN. The third

value function V3 aims to make the prediction η(X) of samples not encode any information

supporting to predict the value of the protected attribute S. Therefore, D3 is trained to

correctly predict S given a sample while the classifier η aims to fool the discriminator D3.

Once the prediction of η cannot be used to predict the protected attribute S, the correlation

between η(X) and S is removed, i.e., η(X) ⊥ S. Then FairGAN+ can release η, which

achieves the desired fairness notion.

The objective function L of the classifier is described as:

max
G,η

L(G, η) = Ey∼P (Y ),x∼Pdata(X|Y,S)[y log η(x)] + Ey∼P (Y ),x̂∼PG(X|Y,S)[y log η(x̂)].

The classifier η maximizes the log-likelihood of the correct class labels as it makes

more accurate predictions during training. The generator G also maximizes log-likelihood

of the correct class labels as it generates samples that match each class accordingly. We

take advantage of the feedback loop of D1, G, η. Improving the utility of G can improve

the utility of η on making correct predictions. Improving η can improve G on generating

more realistic samples conditioned on each class. We also take advantage of the feedback

loop of D2, G,D3, η. Improving the fairness of G can improve η on making fair predictions.

Improving the fairness of η can improve G on generating fair data. Hence, by simultaneously

learning a generative model and a classifier, FairGAN+ can perform better than a standalone

generative model or a standalone classifier.
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6.3.2 Application to Different Classification-based Fairness

Models that modify data or generate fair data apply fairness constraints to enforce

independence between the class label Y and the protected attribute S. However, such pre-

processing methods cannot guarantee the independence between the predicted class label

η(X) and the protected attribute S. Constraints for some classification-based fairness no-

tions require to constrain not only the association between the predicted class label η(X)

and the protected attribute S, but also the conditioned association when conditioning on

the real class label Y . In our model, we connect the real class label Y to the constraints

on the predicted class label η(X) through the discriminator D3. The inputs of D3 are both

the predicted class label η(X) from η and the real class label Y from the prior distribution.

This is not necessary for demographic parity but essential for equality of odds and equality

of opportunity.

Demographic parity is defined as P (η(X) = 1|S = 1) = P (η(X) = 1|S = 0).

It simply requires that the predictions of η is independent of the protected attribute S. In

the above general framework, we mostly discuss the model in terms of demographic parity.

The value function V3 is exactly as Equation 6.6. Once the prediction of η cannot be used

to predict the protected attribute S, the correlation between η(X) and S is removed, i.e.,

η(X) ⊥ S. Then FairGAN+ can release η, which achieves demographic parity.

Equality of odds is defined as P (η(X) = 1|Y = y, S = 1) = P (η(X) = 1|Y = y, S =

0), where y ∈ {0, 1}. As a classification-based fairness notion, equality of odds considers that

individuals who qualify for a desirable outcome should have an equal chance of being correctly

classified for this outcome. It evaluates correlation between the prediction of classifier η(X)

and the protected attribute S based on the value of real label Y . To achieve equality of
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odds for a classifier in the FairGAN+ framework, we need to provide the corresponding real

label y of the prediction η(X) to the discriminator D3. As a constraint of equality of odds

to classification. D3 aims to keep P (η(X) = 1|Y = y, S = 1) = P (η(X) = 1|Y = y, S = 0).

D3 is trained to distinguish the two categories of the predictions made by η given the real

label Y = y, P (η(X) = 1|Y = y, S = 1) and P (η(X) = 1|Y = y, S = 0). In this case, the

third value function V3 of the minimax game becomes

V3(η,D3) = Ey∼P (Y ),x∼P (X|Y=y,S=1)[logD3(η(x)|Y = y)]

+ Ey∼P (Y ),x∼P (X|Y=y,S=0)[log(1−D3(η(x)|Y = y))].

V3 aims to make the prediction η(X) of samples not encode any information supporting to

predict the value of the protected attribute S given the real label Y = y. Therefore, D3

is trained to correctly predict S given a sample and the corresponding real label Y while

the classifier η aims to fool the discriminator D3. Once the prediction of η cannot be used

to predict the protected attribute S given the real label Y = y, the conditional correlation

between η(X) and S is removed, i.e., η(X) ⊥ S|Y = y. Then FairGAN+ can release η, which

achieves equality of odds.

Equality of opportunity is a special case of equality of odds. For FairGAN+ based

on equality of opportunity, the idea is straightforward. It only needs to consider the case

Y = 1, so the discriminator D3 only aims to constrain a subgroup instead of the whole

population. In this case, the third value function V3 of the minimax game becomes

V3(η,D3) = Ey∼P (Y ),x∼P (X|Y=1,S=1)[logD3(η(x)|Y = 1)]

+ Ey∼P (Y ),x∼P (X|Y=1,S=0)[log(1−D3(η(x)|Y = 1))].
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Once the prediction of η cannot be used to predict the protected attribute S given the real

label Y = 1, the conditional correlation between η(X) and S is removed, i.e., η(X) ⊥ S|Y =

1. Then FairGAN+ can release η, which achieves equality of opportunity.

6.4 Experiments

We evaluate the performance of FairGAN, FairGAN+ on fair data generation and fair

classification.

6.4.1 Experimental Setup

6.4.1.1 Baselines

We compare with the ACGAN model [82] on effectiveness, and with adversarial de-

biasing [66] on fair classification.

ACGAN aims to generate the synthetic samples that have the same distribution

as the real data given the values of labels, i.e., PG(X|Y, S) = Pdata(X|Y, S). ACGAN also

contains a classifier, but does not enforce fairness in either data generation or classification.

Note that, in order to match our scenario, we independently generate both the label Y and

the protected attribute S in the ACGAN. Thus, ACGAN achieves statistical fairness in data

generation similar to random shuffle the protected attribute. The classifiers built in both

FairGAN+ and ACGAN are logistic regression model.

Adversarial debiasing (AD) also applies adversarial learning to achieve fairness

in classification. AD cannot generate fair data as it is not a generative model.
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6.4.1.2 Datasets

We evaluate FairGAN, FairGAN+ and baselines on the UCI Adult dataset[95]. It

contains 48,842 samples. The class label Y is “Income”, and the protected attribute S is

“Gender”. There are 12 unprotected attributes X. We convert each attribute to a one-hot

vector and combine all of them to a feature vector with 57 dimensions.

Besides adopting the original Adult dataset (D1-Real), we also generate four types

of synthetic data, D2-ACGAN that is generated by ACGAN, D3-FairGAN that is gener-

ated by FairGAN with λ = 1, D4-FairGAN+(DP) that is generated by FairGAN+ based

on demographic parity with λ = µ = 1, and D5-FairGAN+(EO) that is generated by

FairGAN+ based on equality of odds with λ = µ = 1. We set the sample sizes of the

synthetic datasets the same as the real dataset.

6.4.1.3 Classifiers

After training, we get five logistic regression classifiers: C1-Real that is a regular

logistic regression model trained on the real Adult data, C2-ACGAN that is trained by

ACGAN, C3-FairGAN that is trained on data generated by FairGAN with the assumption

that fair data generation automatically achieves fair classification for any classification-based

fairness, C4-AD that is a debiased classifier trained on the real Adult data through adver-

sarial learning, C5-FairGAN+(DP) that is trained by FairGAN+ based on demographic

parity, and C6-FairGAN+(EO) that is trained by FairGAN+ based on equality of odds.

The evaluation of the classifiers is on the real dataset.

For each model, we train five times and report the means of evaluation results.
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Table 6.1: Data fairness and utility of real and synthetic datasets

Metric D1-Real D2-ACGAN D3-FairGAN D4-FairGAN+(DP) D5-FairGAN+(EO)

Fairness
RD(D) 0.1989 0.0120 0.0411 0.0106 0.0116
BER 0.1538 0.1964 0.3862 0.3867 0.3207

Utility
dist(X, Y )

NA
0.0245 0.0233 0.0232 0.0239

dist(X, Y, S) 0.0204 0.0208 0.0212 0.0210

6.4.2 Fair Data Generation

We evaluate whether FairGAN and FairGAN+ can generate fair data that satisfy

statistical fairness and ε-fairness while learning the distribution of real data precisely.

6.4.2.1 Data Fairness

We adopt the risk difference RD(D) = P (Y = 1|S = 1) − P (Y = 1|S = 0) to

compare the performance of different GAN models on statistical fairness. Table 6.1 shows

the risk differences in the real and synthetic datasets. The risk difference in the Adult dataset

(D1-Real) is 0.1989, which indicates discrimination against female. D2-ACGAN has low risk

difference due to independent priors. D3-FairGAN also has low risk difference as result of

the adversarial game between the generator and the discriminator D2. D4-FairGAN+(DP)

and D5-FairGAN+(EO) both have low risk difference as well.

We further evaluate the ε-fairness (disparate impact) by calculating the balanced error

rates (BERs) shown in Equation 3.14. Note that we adopt a linear SVM to predict S and then

calculate BER. Table 6.1 shows the BERs in the real and synthetic datasets. The BER in D1-

Real is 0.1538, which means a linear SVM can predict S given x with high accuracy. Hence,

there is disparate impact in the real dataset. The BER in D2-ACGAN is 0.1964±0.0033,

which shows that ACGAN captures the disparate impact in the real dataset due to its

unawareness of ε-fairness. On the contrary, the BERs in D3-FairGAN, D4-FairGAN+(DP)

and D5-FairGAN+(EO) are 0.3862±0.0036, 0.3867±0.0049 and 0.3207±0.0121, respectively,
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which indicates using the generated x̂ to predict the real S has much higher error rate. So

the disparate impacts in FairGAN and FairGAN+ are small.

6.4.2.2 Data Utility

We evaluate the closeness between each synthetic dataset and the real dataset by

calculating the Euclidean distance of joint probabilities w/o the protected attribute S, i.e.,

P (X, Y ) and P (X, Y, S). The Euclidean distance is calculated between the estimated prob-

ability mass functions on the sample space, where dist(X, Y ) = ||Pdata(X, Y )− PG(X, Y )||2

and dist(X, Y, S) = ||Pdata(X, Y, S) − PG(X, Y, S)||2. A smaller distance indicates better

closeness. In Table 6.1, all synthetic datasets have small distances to the real dataset for

joint and conditional probabilities. The distances of FairGAN+ is even smaller than Fair-

GAN. We can observe that FairGAN+ still achieves good data utility after satisfying fairness

constraints. As the co-training of the generative model and the classifier improves G on data

generation, FairGAN+ has a more efficient trade-off between utility and fairness of data

generation.

6.4.3 Fair Classification

We evaluate the classifiers that are trained in ACGAN and FairGAN+ on the real

dataset.

6.4.3.1 Classification Fairness

We first compare different classifiers including C5-FairGAN+(DP) on demographic

parity using risk difference RD(η) = P (η(X) = 1|S = 1) − P (η(X) = 1|S = 0). Table 6.2

shows the risk difference of different classifiers. C1-Real has a risk difference of 0.1834, which
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Table 6.2: Classification fairness and accuracy of different classifiers

C1-Real C2-ACGAN C3-FairGAN C4-AD C5-FairGAN+(DP) C6-FairGAN+(EO)
DP RD(η) 0.1834 0.1119 0.0901 0.0760 0.0141 NA

EO
DTPR 0.1017 0.0854 0.1473 0.0388

NA
0.0312

DFPR 0.0746 0.0395 0.0361 0.0184 0.0245

Accuracy 0.8448 0.8359 0.8256 0.7902 0.8178 0.8218

indicates a regular logistic regression model learns the risk difference in the real Adult data

and makes unfair predictions. C2-ACGAN has a high risk difference 0.1119±0.0182, which

is discriminative due to ACGAN’s unawareness of demographic parity. C3-FairGAN has a

lower risk difference 0.0901±0.0220 but still discriminative (above the threshold 0.05). This

indicates that FairGAN’s assumption on fair classification from fair data generation does

not always hold. The risk difference is lower as the result of fair data but it is still not small

enough to guarantee fairness. However, C4-AD also has a lower risk difference 0.0760±0.0058

but still discriminative (above the threshold 0.05). C5-FairGAN+(DP) has a low risk differ-

ence 0.0141±0.0065. As C5-FairGAN+(DP) learns to make predictions uncorrelated to S,

FairGAN+ based on demographic parity can achieve demographic parity.

Then we compare different classifiers including C6-FairGAN+(EO) on equality of

odds. Equality of odds is a more complex fairness notion based on classification. We use differ-

ence in true positive rates DTPR = P (η(X) = 1|Y = 1, S = 1)−P (η(X) = 1|Y = 1, S = 0)

and difference in false positive rates DFPR = P (η(X) = 1|Y = 0, S = 1) − P (η(X) =

1|Y = 0, S = 0) to measure equality of odds. Table 6.2 shows the DTPR and DFPR of

different classifiers. C1-Real has 0.1017 difference in TPR and 0.0746 difference in FPR,

which indicates a regular logistic regression model without any fairness constraint makes

predictions with inequality of odds. C2-ACGAN has 0.0854±0.0316 difference in TPR and

0.0395±0.0098 difference in FPR, which is smaller than C1-Real but still slightly discrimi-

native. C3-FairGAN has 0.1473±0.0608 difference in TPR and 0.0361±0.0145 difference in
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FPR, which is largely discriminative for subgroup with Y = 1. This also indicates that Fair-

GAN’s assumption on fair classification from fair data generation is wrong. Especially for

advanced classification-based fairness notions, simply training on fair data has very limited

effect on such fairness notions. Hence, it is more practical to achieve such classification-based

fairness by directly applying constraints on the classifier. C4-AD has has 0.0388±0.0234 dif-

ference in TPR and 0.0184±0.0121 difference in FPR, which indicates AD is effective on

achieving equality of odds. C6-FairGAN+(EO) has 0.0312±0.0316 difference in TPR and

0.0245±0.0124 difference in FPR, which is similar to C4-AD. As C6-FairGAN+(EO) learns

to make predictions uncorrelated to S based on the real label Y , FairGAN+ based on equality

of odds can achieve equality of odds in the classifier.

6.4.3.2 Classification Accuracy

We evaluate the accuracy of different classifiers on the real Adult dataset. Table

6.2 shows the classification accuracy of different classifiers. The accuracy of C1-Real is

0.8448. The accuracy of C2-ACGAN is 0.8359±0.0017. The accuracy of C3-FairGAN is

0.8256±0.0021. However, these classifiers are unfair to the protected group. The accuracy of

C4-AD is 0.7902±0.0043. The accuracies of C5-FairGAN+(DP) and C6-FairGAN+(EO) are

0.8178±0.0035 and 0.8218±0.0062, respectively. They are slightly lower than other classi-

fiers, which indicates that AD and FairGAN+ models have a trade-off between classification

accuracy and fairness. In FairGAN+, small utility loss is caused by playing the adversarial

game with the third discriminator D3 to achieve respective notions of classification fairness.

We can observe that C5-FairGAN+(DP) and C6-FairGAN+(EO) have higher accuracy than

C4-AD after satisfying the desired classification-based fairness. As the co-training of the gen-

erative model and the classifier improves η on classification, FairGAN+ has a more efficient
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trade-off between the utility and fairness of classification.

6.5 Summary

We first developed FairGAN to generate fair data, which is free from disparate treat-

ment and disparate impact, while retaining high data utility. FairGAN consists of one gener-

ator and two discriminators. We then developed FairGAN+ to (1) generate fair data, which is

free from disparate treatment and disparate impact w.r.t. the real protected attribute, while

retaining high data utility, and (2) release a fair classifier that satisfies classification-based

fairness, such as demographic parity, equality of odds and equality of opportunity. FairGAN+

consists of one generator, one classifier and three discriminators. The experimental results

showed the effectiveness of FairGAN on fair data generation, the effectiveness of FairGAN+

on both fair data generation and fair classification, and the better trade-off of FairGAN+

between the utility and fairness when co-training a generative model and a classifier. The

early version of this work is published at IEEE BigData 2018 [111] and IEEE BigData 2019

[112].
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7 Achieving Causal Fairness through Generative Adversarial Networks

7.1 Introduction

In this work, we propose a causal fairness-aware generative adversarial network (CF-

GAN) for generating data that achieve various causal-based fairness criteria. Motivated by

CausalGAN [83], we preserve the causal structure in the generator by arranging the neural

network structure of the generator following a given causal graph. As a result, the generator

can be considered as to simulate the underlying causal model of generating the observational

data. (It is worth noting that causal effects may not be estimated from observational data in

certain situations, referred to as unidentifiable situations. The generator can be treated as

simulating the true causal model only in identifiable situations.) Then, in order to handle

different fairness criteria, we adopt two generators for explicitly modeling the real world

and the world after we perform some hypothetical interventions. The two generators differ

in some aspects to reflect the effect of interventions, but are also synchronized in terms of

sharing parameters to reflect the connections between the two worlds. Then we adopt two

discriminators for achieving both the high data utility and causal-based fairness. Experi-

ments using the real world dataset show that CFGAN can generate high quality fair data

based on different criteria.

7.2 CFGAN

For general preliminaries of causal modeling and generative adversarial networks,

please refer to Chapter 3.2.3 and Chapter 3.3, respectively.

To discuss the design of CFGAN, we first formulate our problem (Section 7.2.1), and
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then discuss the overall framework (Section 7.2.2). The CFGAN based on different fairness

criteria will be discussed in Sections 7.2.3, 7.2.4 and 7.2.5. For all types of causal effects, we

simply assume they are identifiable.

7.2.1 Problem Statement

In this work, we follow the conventional notations in fairness-aware learning. We

consider V = {X, Y, S}, where S denotes the sensitive variable, Y denotes the decision

variable, and X denotes the set of all other variables (profile attributes). Given a causal graph

G = (V,E) and a dataset with m samples (x, y, s) ∼ Pdata = P (V), the goal of CFGAN is

to (1) generate new data (x̂, ŷ, ŝ) which preserves the distribution of all attributes in the real

data and (2) ensure that in the generated data Ŝ has no discriminatory effect on Ŷ in terms

of various causal-based criteria. Note that we use the hatted variables to denote the fake

data generated by the generator. For ease of discussion, we consider both S and Y as binary

variables, where s+ denotes S = 1 and s− denotes S = 0. It’s straightforward to extend this

to the multi-categorical or numerical cases. In this work we mostly discuss the causal effect

of a single variable S on another single variable Y . However, the model is capable to handle

causal effects between multiple variables as well.

We consider causal fairness criteria based on total effect [29], direct discrimination

[28], indirect discrimination [28], and counterfactual fairness [31], defined below.

Definition 13. There is no total effect in the data if TE(s+, s−) = 0.

Definition 14. There is no direct discrimination in the data if SEπd(s
+, s−) = 0, where πd

is the path set that only contains the direct edge from S to Y , i.e., S → Y .

Definition 15. Given a subset of attributes R ⊆ X that cannot be objectively justified in
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Figure 7.1: The structure of CFGAN

decision making, there is no indirect discrimination in the data if SEπi(s
+, s−) = 0, where

πi is the set of causal paths from S to Y that pass through R.

Definition 16. Given a subset of attributes O ⊆ X, counterfactual fairness is achieved in

the data if CE(s+, s−|o) = 0 under any context O = o.

7.2.2 Model Framework

We propose the CFGAN model which consists of two generators (G1, G2) and two

discriminators (D1, D2). Figure 7.1 shows the framework of CFGAN.

As shown in Sections 3.2.3.2 and 7.2.1, in general, causal-based fairness criteria com-

pare the intervention distributions of Y under two different interventions do(S = s+) and

do(S = s−). To implement these criteria, CFGAN adopts two generators. One generator G1

plays the role of original causal model M similar to CausalGAN, while the other genera-

tor G2 explicitly plays the roles of different interventional models Ms based on the type
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of causal effects. Generator G1 aims to generate observational data whose distribution is

close to the real observational distribution, and generator G2 aims to generate interventional

data that satisfy the criterion defined in Section 7.2.1. The two generators share the input

noises and parameters to reflect the connections between the two causal models, and differ

in connections of sub-neural networks to reflect the intervention. Then, CFGAN adopts two

discriminators, where one discriminator D1 tries to distinguish the generated data from the

real data, and the other discriminator D2 tries to distinguish the two intervention distri-

butions under do(S = s+) and do(S = s−). Finally, generators and discriminators play the

adversarial game to produce high quality fair data.

Next, we give the details in designing the generators and discriminators for different

fairness criteria.

7.2.3 CFGAN based on Total Effect

We first show the CFGAN with no total effect (Definition 13).

Generators. Generator G1 is designed to agree with the causal graph G = (V,E).

It consists of |V| sub-neural networks, where each of them corresponds to a node in V.

All sub-neural networks are connected following the connections in G. To be specific, each

sub-neural network G1
Vi

takes as input an independent noise vector ZVi as well as the output

of any other sub-neural network G1
Vj

if Vj is a parent of Vi in G. Then, it outputs sample

values of Vi, i.e., v̂i.

The other generator G2 is designed to agree with the interventional graph Gs =

(V,E \ {Vj → S}Vj∈PaS), where all incoming edges to S are deleted under intervention

do(S = s). The structure of G2 is similar to that of G1, except for that sub-neural network

G2
S is set as G2

S ≡ 1 if s = s+, and G2
S ≡ 0 if s = s−. The two generators G1 and G2
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are synchronized by sharing the same set of parameters for each pair of corresponding sub-

neural networks, i.e., G1
Vi

and G2
Vi

for each Vi except for S, as well as the same noise vectors

Z = z. As a result, G1 can generate samples from the observational distribution, and G2

can generate samples from two interventional distributions, i.e., (x̂, ŷ, ŝ) ∼ PG1(X, Y, S),

(x̂s+ , ŷs+) ∼ PG2(Xs+ , Ys+), if s = s+, (x̂s− , ŷs−) ∼ PG2(Xs− , Ys−), if s = s−.

(a) Causal graph G and interventional graph Gs

(b) Generators G1 and G2

Figure 7.2: An example of the generators G1 and G2 for CFGAN based on total effect. S
is set to 1 or 0 to sample from the interventional distributions PG2(As+ , Bs+ , Ys+) (red) and
PG2(As− , Bs− , Ys−) (green) respectively.

Consider an example in Figure 7.2 which involves 4 variables {A, S,B, Y }. Figure

7.2a shows the causal graph G and the interventional graph Gs under do(S = s), where the
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double headed arrows indicate the pair of nodes that share the same hidden variables and

the function. Figure 7.2b shows the structures of the generators where G1 agrees with G and

G2 agrees with Gs. The double headed arrows indicate the sharing of noises and parameters

of sub-neural networks. As shown, the edge from A to S is deleted in Gs, which is also

reflected in G2. In addition, for each pair of nodes in the graphs, e.g., B in G and B in Gs,

the corresponding sub-neural networks are also synchronized, e.g., G1
B and G2

B.

Discriminators. Discriminator D1 is designed to distinguish between the real obser-

vational data (x, y, s) ∼ Pdata(X, Y, S) and the generated fake observational data (x̂, ŷ, ŝ) ∼

PG1(X, Y, S). The other discriminator D2 is designed to distinguish between the two inter-

ventional distributions ŷs+ ∼ PG2(Ys+) and ŷs− ∼ PG2(Ys−).

Putting the generators and discriminators together, generator G1 plays the adversarial

game with the discriminator D1, and generator G2 plays the adversarial game with the

discriminator D2. The overall minimax game is described as:

min
G1,G2

max
D1,D2

J(G1,G2,D1,D2) = J1(G1,D1) + λJ2(G2,D2),

where

J1(G1, D1) = E(x,y,s)∼Pdata(X,Y,S)[logD1(x, y, s)] + E(x̂,ŷ,ŝ)∼PG1 (X,Y,S)[1− logD1(x̂, ŷ, ŝ)],

J2(G2, D2) = Eŷs+∼PG2 (Ys+ )[logD2(ŷs+)] + Eŷs−∼PG2 (Ys− )[1− logD2(ŷs−)],

and λ is a hyperparameter which controls a trade-off between utility and fairness of data

generation. The first value function J1 aims to achieve PG1(X, Y, S) = Pdata(X, Y, S), i.e.,

to make the generated observational data indistinguishable from the real data. The sec-

ond value function J2 aims to achieve PG2(Ys+) = PG2(Ys−). Since Definition 13 requires
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TE(s+, s−) = 0, or equivalently P (Ys+) = P (Ys−), J2 actually makes the generated interven-

tional data satisfy the fairness criterion. As G1 and G2 share the same sets of parameters,

the observational data generated by G1 can be considered as being generated by a causal

model which is close to the real causal model and also satisfies the fairness criterion. Finally,

the generated fair data can be released to public.

7.2.4 CFGAN based on Direct and Indirect Discrimination

Both direct and indirect discrimination are based on path-specific effects. In this

section, we focus on the indirect discrimination criterion, and direct discrimination criterion

can be achieved similarly. Given a path set πi that contains the paths pass through unjustified

attributes, Definition 15 requires that SEπi(s
+, s−) = 0, or equivalently P (Ys+|πi ) = P (Ys−|πi )

with reference s−.

The design of generator G1 is similar to that in Section 7.2.3, but G2 is different in

that it needs to simulate the situation where the intervention is transferred along πi only. To

this end, we first similarly design the structure of G2 to agree with the interventional graph

Gs = (V,E \ {Vj → S}Vj∈PaS). Then, we consider two types of value settings for sub-neural

network G2
S: the reference setting and the interventional setting. For the reference setting,

G2
S is always set as G2

S ≡ 0. For the interventional setting, G2
S is set as G2

S ≡ 1 if s = s+ and

G2
S ≡ 0 if s = s−. On the other hand, each of other sub-neural networks may output two

types of sample values according to the value setting of G2
S, referred to as the reference value

and interventional value respectively. For a sub-neural network, if its corresponding node is

not on any path in πi, it always takes reference values as input and outputs reference values.

However, for any other sub-neural network G2
Vj

that is on at least one path in πi, it may

take both types of values as input and output both. Specifically, for any sub-neural network
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(a) Gs and πi (b) Generator G2

Figure 7.3: An example of the generator G2 for CFGAN based on indirect discrimination. S
is set to 1 or 0 and the transmission is set only along π = {S → B → Y } to sample from the
interventional distributions PG2(As+|π , Bs+|π , Ys+|π) (red) and PG2(As−|π , Bs−|π , Ys−|π) (green)
respectively. S is set to be 0 for the reference setting.

G2
Vi

where Vi is a child of Vj, if edge Vj → Vi does not belong to any path in πi, then G2
Vj

will feed the reference output values to G2
Vi

. Otherwise, the interventional output values will

be fed. As a result, the interventional distribution generated by G2 simulates the situation

of the path-specific effect, which we denote as PG2(Xs|π , Ys|π).

Consider an example (Figure 7.3) with the same causal graph in Figure 7.2. The

interventional graph Gs and πi = {S → B → Y } is shown in Figure 7.3b, and generator G2

is shown in Figure 7.3b. Since B is on the path in πi, G
2
B takes interventional values of S as

input and outputs interventional values to G2
Y . On the other hand, G2

Y takes interventional

values from G2
B and reference values from G2

S ≡ 0 as input.

To achieve no indirect discrimination, discriminator D2 is designed to distinguish

between two interventional distributions ŷs+|πi ∼ PG2(Ys+|πi ) and ŷs−|πi ∼ PG2(Ys−|πi ). By

playing the adversarial game with G2, the corresponding value function J2 aims to achieve

PG2(Ys+|πi ) = PG2(Ys−|πi ). Similarly, since G1 and G2 share the parameters, the observational
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data generated by G1 can also be considered as satisfying the no indirect discrimination

criterion.

7.2.5 CFGAN for Counterfactual Fairness

In counterfactual fairness, the intervention is performed conditioning on a subset

of variables O = o. Thus, different from previous fairness criteria that concern the inter-

ventional model only, counterfactual fairness concerns the connection between the origi-

nal causal model and the interventional model. We reflect this connection in CFGAN by

building a direct dependency between the samples generated by G1 and the samples gen-

erated by G2. Specifically, the structures of G1 and G2 are similar to those in Section

7.2.3. However, for each noise vector z, we first generate the observational sample by us-

ing G1, and observe whether in the sample we have O = o. Only for those noise vectors

with O = o in the generated samples, we use them for generating interventional sam-

ples by using G2. Thus, the interventional distribution generated by G2 is conditioned on

O = o, denoted by PG2(Xs, Ys|o). Finally, discriminator D2 is designed to distinguish be-

tween ŷs+|o ∼ PG2(Ys+|o) and ŷs−|o ∼ PG2(Ys−|o), producing the value function that aims

to achieve PG2(Ys+ |o) = PG2(Ys−|o).

7.3 Experiments

7.3.1 Experiment Setup

The dataset we use for evaluation is the UCI Adult income dataset[95]. It contains

65,123 samples with 11 variables. Following the setting in [28], we binarize each attribute to

reduce the complexity for causal graph discovery. We treat sex as the sensitive variable S,

income as the decision variable Y . The estimated causal graph is shown in Figure 7.4.
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Figure 7.4: The causal graph for Adult dataset: the blue paths represent the indirect path
set πi.

We evaluate the performance of CFGAN in generating fair data for different types

of causal fairness. The fairness threshold is 0.05, i.e., the effect should be in [−0.05, 0.05] to

be fair. We compare CFGAN with other data generating approaches for different fairness

respectively as other approaches may only be able to achieve one or two types of fairness.

Specifically, we consider two baselines: (1) the original dataset; and (2) CausalGAN

[83], which preserves the causal structure of the original data but is unaware of the fairness

constraint. For total effect, we compare with FairGAN [111], which removes all information

correlated to S in other attributes. For indirect discrimination (we skip the results for direct

discrimination as the original dataset contains no direct discrimination), we further compare

with PSE-DR [28], which is a direct/indirect discrimination removing algorithm by modifying

the causal graph and generating new fair data based on the modified causal graph. For

counterfactual fairness, we instead compare with A1 and A3 [31]. A1 generates fair decisions

using a classifier that is built on non-descendants of S. A3 is similar to A1 but presupposes

an additive noise model for estimating noise terms, which are then used for building the

classifier. For both A1 and A3, we use SVM as the classifier for generating fair decisions.
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Total effect Indirect discrimination χ2 Classifier accuracy
SVM DT LR RF

Real data 0.1936 0.1754 0 0.8178 0.8177 0.8170 0.8178

CausalGAN 0.1721 0.1508 14482 0.8143 0.8136 0.8160 0.8137

FairGAN 0.0021 0.0133 41931 0.8088 0.8081 0.8136 0.8082

PSE-DR NA 0.0243 12468 0.8073 0.8073 0.8128 0.8075

CFGAN (TE) 0.0102 NA 14566 0.8134 0.8126 0.8120 0.8127

CFGAN (SE) NA 0.0030 19724 0.8037 0.8030 0.8103 0.8024

Table 7.1: The total effect and indirect discrimination of real and generated datasets

For data utility, we compute the χ2 distance, where a smaller χ2 indicates better

utility. We also use the generated data to train classifiers and measure the accuracy. We

evaluate 4 classifiers: support vector machine (SVM), decision tree (DT), logistic regression

(LR) and random forest (RF).

7.3.2 Total Effect

We calculate the total effect for the original dataset and different generated datasets.

The results are shown in Table 7.1. As can be seen, the original data has a total effect of

0.1936, and CausalGAN preserves similar total effect. FairGAN produces no total effect,

but with the worst utility in terms of χ2. This may be because FairGAN removes too much

information due to its causal blindness. The generated data by CFGAN based on total effect

(CFGAN (TE), λ = 1) produces no total effect, and also preserves good data utility.

7.3.3 Indirect Discrimination

For indirect discrimination, we consider all the paths passing through marital status

as πi. The results are also shown in Table 7.1. Similar to total effect, CausalGAN preserves

indirect discrimination close to the original data, and FairGAN removes indirect discrim-

ination but causes the largest utility loss. On the other hand, PSE-DR and our method
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Counterfactual effect
χ2 Classifier accuracy

o1 o2 o3 o4 SVM DT LR RF

Real data 0.2023 0.1293 0.1266 0.1785 0 0.8178 0.8177 0.8170 0.8178

CausalGAN 0.1824 0.1155 0.1466 0.0959 14482 0.8143 0.8136 0.8160 0.8137

A1 0.0000 0.0000 0.0000 0.0000 17757 0.7615 0.7615 0.7615 0.7615

A3 0.2159 0.1127 0.1056 0.1860 12313 0.8159 0.8159 0.8159 0.8159

CFGAN (CE) 0.0209 0.0034 -0.0030 -0.0482 13904 0.8130 0.8123 0.8130 0.8115

Table 7.2: The counterfactual effect of real and generated datasets

(CFGAN (SE), λ = 1) can remove indirect discrimination and also have good data utility.

We see that the two methods achieve comparable performance based on different techniques.

7.3.4 Counterfactual Fairness

For counterfactual fairness, we consider the observation of two attributes, i.e., O =

{race, native country}, which has 4 value combinations. Table 7.2 shows the results for all

4 subgroups. As can be seen, the original data and CausalGAN contain biases in terms

of counterfactual fairness in all subgroups. A1 is counterfactual fair as expected since it

is proved to be so in [31]. However, the data utility is bad especially in terms of classifier

accuracy, since it only uses non-descendants of sex in labeling decisions. A3 cannot achieve

counterfactual fairness, probably because its linear assumption does not fit the original data

well. Finally, our method (CFGAN (CE), λ = 1) achieves both counterfactual fairness and

good data utility.

7.3.5 Parameter Sensitivity

We evaluate the trade-off between utility and fairness when changing λ in the overall

minimax game. A larger λ indicates a stronger enforcement on the fairness and compromise

on utility. Figure 7.5 shows the results for total effect, where we get a fairly good trade-off

between utility and fairness at λ = 1. We observe similar results for other fairness types.
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Figure 7.5: Total effect and χ2 under different λ

7.4 Summary

We developed the causal fairness-aware generative adversarial networks (CFGAN)

for generating high quality fair data. We considered various causation-based fairness crite-

ria, including total effect, direct discrimination, indirect discrimination, and counterfactual

fairness. CFGAN consists of two generators and two discriminators. The two generators aim

to simulate the original causal model and the interventional model. This is achieved by ar-

ranging the neural network structure of the generators following the original causal graph

and the interventional graph. Then, two discriminators are adopted for achieving both the

high data utility and causal fairness. Experiments using the Adult dataset showed that CF-

GAN can achieve all types of fairness with relatively small utility loss. The early version of

this work is published at IJCAI 2019 [113].
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8 Achieving Differential Privacy and Fairness in Logistic Regression

8.1 Introduction

In this work, we focus on how to achieve both differential privacy and fairness in

logistic regression – a widely-used classification model. It’s challenging to achieve both re-

quirements efficiently. The goal of differential privacy in a classification model is to make sure

the classifier output is indistinguishable whether an individual record exists in the dataset

or not. Its focus is on the individual level. The goal of fairness-aware learning is to make

sure that predictions of the protected group are identical to those of the unprotected group,

e.g., admission rate of female (as protected group) should be same to male (as unprotected

group). Its focus is on the group level. There is no formal study on how to achieve both

differential privacy and fairness in classification models.

We develop two methods to achieve differential privacy and fairness in logistic re-

gression. Our simple method incorporates the decision boundary fairness constraint into the

objective function of the logistic regression as a penalty term and then applies the func-

tional mechanism to the whole constrained objective function to achieve differential privacy.

The decision boundary fairness constraint of logistic regression is defined as the covariance

between the users’ protected attribute and the signed distance from the users’ unprotected

attribute vectors to the decision boundary, and can be further formulated as the signed dis-

tance between the centroids of the protected and unprotected groups. To achieve differential

privacy, the functional mechanism brings randomness to the polynomial coefficients of the

constrained objective function by introducing Laplace noise with zero mean. Because the

penalty term contributes to the global sensitivity of objective function, this simple approach
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may inject too much noise to the objective function, which reduces the utility of the built

logistic regression model. We further develop an enhanced model that injects Laplace noise

with shifted mean to the objective function of logistic regression. Our idea is based on the

connection between ways of achieving differential privacy and fairness. We notice that both

the fairness constraint and functional mechanism perturb the polynomial coefficients of the

original objective function. Hence, we can combine them as a single term. In fact, the decision

boundary fairness constraint of logistic regression can be treated as a shift of the polynomial

coefficients by the signed distance between the centroids of the protected and unprotected

groups. As a result, we add noise from a Laplace distribution with non-zero mean that is

derived from the fairness constraint. In this way, the fairness constraint is not a penalty

term, so we can use privacy budget more efficiently and add less noise.

8.2 Preliminaries

Let D = {X, S, Y } be a dataset with n tuples t1, t2, · · · , tn, where X = (X1, X2,

· · · , Xd) indicates d unprotected attributes; S denotes the protected attribute; Y is the

decision. For each tuple ti = {xi, si, yi}, without loss of generality, we assume xi(l) ∈ [0, 1]

for l = (1, 2, · · · , d), si ∈ {0, 1}, and yi ∈ {0, 1}. Our objective is to build a classification

model ŷ = q(x; w) with parameter w from D that achieves reasonable utility and meets

both fairness and differential privacy requirements. To fit w to make accurate predictions,

we have an objective function fD(w) =
∑n

i=1 f(ti; w) that takes ti and w as input. The

optimal model parameter w̄ is defined as: w̄ = arg min
w

∑n
i=1 f(ti; w).

For general preliminaries of differential privacy and fairness-aware machine learning,

please refer to Chapter 3.1 and Chapter 3.2, respectively.
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8.3 Differentially Private and Fair Logistic Regression

In this section, we first present a simple approach (PFLR) to achieve differentially

private and fair logistic regression. Then we show it leads to an enhanced approach (PFLR*)

that achieves the same level of differential privacy and fairness with more flexibility and less

noise.

8.3.1 PFLR: A Simple Approach

One straightforward approach to achieve both differential privacy and fairness is to

apply the functional mechanism to the objective function with fairness constraint f̃D(w).

We consider the fairness constraint as a penalty term to the objective function. Then, the

objective function ends up as:

f̃D(w) = fD(w) + α|gD(w)− τ |, (8.1)

where α is a hyper-parameter to balance the trade-off between utility and fairness. We set

α = 1, τ = 0 for ease of discussion. The theoretical analysis still holds if α and τ are set to

other values.

For logistic regression, fD(w) is the objective function shown in Equation 3.9, and

gD(w) indicates the decision boundary fairness constraint shown in Equation 3.17. We then

rewrite f̃D(w) in the polynomial form based on Taylor expansion.

f̃D(w) =

( n∑
i=1

2∑
j=0

f
(j)
1 (0)

j!

(
xTi w

)j)− ( n∑
i=1

yix
T
i

)
w +

∣∣∣∣ n∑
i=1

(si − s̄)xTi w

∣∣∣∣. (8.2)

By transforming f̃D(w) in the form of Equation 3.7, we have λ̃1ti = λ1ti + |(si − s̄)xi| and
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λ̃2ti = λ2ti , where λ1ti and λ2ti are defined in Equations 3.11 and 3.12, respectively.

The global sensitivity of f̃D(w) is:

∆f̃ = 2 max
t

(∣∣∣(f (1)
1 (0)

1!
− y + |s− s̄|

) d∑
l=1

x(l)

∣∣∣+

∣∣∣∣f (2)
1 (0)

2!

d∑
l,m

x(l)x(m)

∣∣∣)
≤ 2(

3d

2
+
d2

8
) =

d2

4
+ 3d.

(8.3)

The derived w̄ satisfies ε-differential privacy by applying Algorithm 5. Since the objective

function contains the fairness constraint as a penalty term, the classification model also

achieves fairness.

Algorithm 5 PFLR (Dataset D, objective function fD(w), fairness constraint gD(w), pri-
vacy budget ε)

1: Set f̃D(w) by Equation 8.1
2: Compute λ1ti and λ2ti by Equations 3.11 and 3.12
3: Set λ̃1ti = λ1ti + |(si − s̄)xi| and λ̃2ti = λ2ti

4: Set ∆f̃ by Equation 8.3

5: Set λ̄1 =
(∑n

i=1 λ̃1ti

)
+ Lap(0,

∆f̃

ε
)

6: Set λ̄2 =
(∑n

i=1 λ̃2ti

)
+ Lap(0,

∆f̃

ε
)

7: Let f̄D(w) = λ̄T1 Φ1 + λ̄T2 Φ2

8: Compute w̄ = arg min
w

f̄D(w)

9: Return w̄

Theorem 8. Algorithm 5 satisfies ε-differential privacy.

Proof. Assume D and D′ are two neighbouring datasets. Without loss of generality, D and D′

differ in row tr and t′r. ∆ is calculated by Equation 8.3. f̄(w) is the output of Line 7. We have
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Pr{f̄(w)|D}
Pr{f̄(w)|D′}

=

2∏
j=1

∏
φ∈Φj

exp
(
ε

∣∣∣∣∑
ti∈D

λ̃φti−λ̄φ
∣∣∣∣

1

∆f̃

)
2∏
j=1

∏
φ∈Φj

exp
( ε∣∣∣∣∑t′

i
∈D′ λ̃φt′

i
−λ̄φ
∣∣∣∣

1

∆f̃

)
≤

2∏
j=1

∏
φ∈Φj

exp
( ε

∆f̃

·
∣∣∣∣∣∣∑
ti∈D

λ̃φti −
∑
t′i∈D′

λ̃φt′i

∣∣∣∣∣∣
1

)
=

2∏
j=1

∏
φ∈Φj

exp
( ε

∆f̃

·
∣∣∣∣λ̃φtr − λ̃φt′r∣∣∣∣1)

= exp
( ε

∆f̃

·
2∑
j=1

∑
φ∈Φj

∣∣∣∣λ̃φtr − λ̃φt′r∣∣∣∣1) ≤ exp
( ε

∆f̃

· 2 max
t

2∑
j=1

∑
φ∈Φj

||λ̃φt||1
)

= exp(ε).

(8.4)

8.3.2 PFLR*: An Enhanced Approach

We further enhance the simple approach by incorporating the fairness constraint into

the Laplace noise.

In Equation 8.2, the fairness constraint gD(w) =
∑n

i=1(si− s̄)xTi w can be considered

as shifting the first degree polynomial coefficients of Φ1 in the objective function by
∑n

i=1(si−

s̄)xi. Since
∑n

i=1(si − s̄)xi is the signed distance between the centroids of the protected and

unprotected groups, the derived w̄ based on the shifted coefficients ensures that the centroids

of the protected and unprotected groups have the same distance to the decision boundary.

Thus, the decision boundary fairness is achieved.

Meanwhile, the functional mechanism adds Laplace noise to inject randomness to

the polynomial coefficients of the objective function. Because Pr{f̄(w)|D} depends on the

probability of the noise distribution, the designed Laplace noise provides the property of

differential privacy.

Following this observation, instead of applying the fairness constraint as a penalty

term to the objective function, we design a new functional mechanism that incorporates
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fairness constraint into the Laplace noise. In particular, we shift the polynomial coefficients

when adding Laplace noise. The shift is achieved by setting the mean of Laplace distribution.

As gD(w) only affects Φ1, we change the mean of Laplace distribution µ = {µ(l)}dl=1 from 0

to
∑n

i=1(si − s̄)xi for the coefficients related with Φ1, so it has the equivalent effect to the

fairness constraint. Formally, we have µ(l) =
∑n

i=1(si−s̄)x(l)ti . Because the fairness constraint

is not a penalty term of the objective function, PFLR* has the same objective function as

the regular logistic regression fD(w) (defined in Equation 3.10). The global sensitivity of

PFLR* is ∆f = d2/4 + d as shown in Equation 3.13.

Note that, given a dataset, µ =
∑n

i=1(si − s̄)xi is fixed. As we also access data when

calculating µ, a small part of privacy budget εg is used to calculate µ in a differentially

private manner by Laplace mechanism (Algorithm 6 Line 2). The sensitivity of µ is

∆g = 2 max
t

∣∣∣ d∑
l=1

(str − s̄)xtr(l)
∣∣∣ ≤ 2d. (8.5)

We formalize our new functional mechanism with fairness constraint as Algorithm

6. We split the total privacy budget ε into two parts εf and εg. We first calculate the

differentially private µ with the privacy budget εg (Lines 1-2). Then, we introduce Laplace

noise Lap(µ,
∆f

εf
) to the polynomial coefficients of the objective function with the privacy

budget εf (Lines 3-7). Note that we only add the shifted Laplace noise to coefficients with

Φ1. Finally, we derive the optimized w̄ according to f̄D(w) (Line 8). Next we show PFLR*

achieves ε-differential privacy.

Theorem 9. Algorithm 6 satisfies ε-differential privacy.

Proof. Assume D and D′ are two neighbouring datasets. Without loss of generality, D and

D′ differ in row tr and t′r. ∆f is calculated by Equation 3.13. f̄(w) is the output of Line 7.
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Adding Laplace noise with non-zero mean to coefficients still satisfies εf -differential privacy.

Pr{f̄(w)|D}
Pr{f̄(w)|D′}

=

∏
φ∈Φ1

exp
( εf ∣∣∣∣∣∣∣∣∣∣ ∑ti∈D λφti−λ̄φ−µ

∣∣∣∣∣
∣∣∣∣∣
1

∆f

) ∏
φ∈Φ2

exp
( εf ∣∣∣∣∣∣∣∣∣∣ ∑ti∈D λφti−λ̄φ

∣∣∣∣∣
∣∣∣∣∣
1

∆f

)
∏
φ∈Φ1
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·
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∑
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λφt′i

∣∣∣∣∣∣
1

)
·
∏
φ∈Φ2

exp
( εf

∆f

·
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ti∈D

λφti −
∑
t′i∈D′

λφt′i

∣∣∣∣∣∣
1

)

=
2∏
j=1

∏
φ∈Φj

exp
( εf

∆f

·
∣∣∣∣λφtr − λφt′r∣∣∣∣1) = exp

( εf
∆f

·
2∑
j=1

∑
φ∈Φj

∣∣∣∣λφtr − λφt′r∣∣∣∣1)

≤ exp
( εf

∆f

· 2 max
t

J∑
j=1

∑
φ∈Φj

||λφt||1
)

= exp(εf )

(8.6)

Using Laplace mechanism, Line 2 satisfies εg-differential privacy on calculating µ. Since

εf + εg = ε, Algorithm 6 satisfies ε-differential privacy.

Algorithm 6 PFLR* (Database D, objective function fD(w), fairness constraint gD(w),
privacy budget εf , εg)

1: Set ∆g by Equation 8.5

2: Calculate µ = {µ(l)}dl=1 by µ(l) =
∑n

i=1(si − s̄)x(l)ti + Lap(0, ∆g

εg
)

3: Compute λ1ti and λ2ti by Equation 3.11 and 3.12
4: Set ∆f by Equation 3.13

5: Set λ̄1 =
(∑n

i=1 λ1ti

)
+ Lap(µ,

∆f

εf
)

6: Set λ̄2 =
(∑n

i=1 λ2ti

)
+ Lap(0,

∆f

εf
)

7: Let f̄D(w) = λ̄T1 Φ1 + λ̄T2 Φ2

8: Compute w̄ = arg min
w

f̄D(w)

9: Return w̄

Comparison between PFLR and PFLR*. In PFLR, the fairness constraint term

gD(w) contributes to the sensitivity of the polynomial coefficients of the objective function.

In PFLR*, the fairness constraint is achieved by adding Laplace noise with non-zero mean

value, so the sensitivity of the polynomial coefficient is not related to gD(w). PFLR* uses
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separate budgets on objective function and fairness constraint, so it’s more flexible to find

good trade-offs among privacy, fairness and utility. The fairness constraint has a much smaller

sensitivity than the objective function (∆g � ∆f ). Hence, we can allocate a relatively small

privacy budget on calculating the fairness constraint with Laplace mechanism, the utility is

still satisfactory. Then, more privacy budget can be used to the objective function, resulting

in a smaller scale of noise. More concretely, we compare the amount of noise that is introduced

to the two proposed approaches. The variance of λφti ∈ {λ̄1, λ̄2} in PFLR is 2(∆f̃/ε)
2. Thus,

the variance of total noise added in PFLR is 2(d2 + d)(∆f̃/ε)
2. On the other hand, the

variance of λφti ∈ λ̄2 in PFLR* is V ar(λ̄2) = 2(∆f/εf )
2. Because PFLR* injects Laplace

noise to both λ̄1 and µ, based on the law of total variance, the variance of λφti ∈ λ̄1 in

PFLR* is V ar(λ̄1) = E[V ar(λ̄1|µ)] + V ar(E[λ̄1|µ]) = 2(∆f/εf )
2 + 0. Thus, the variance of

total noise added in PFLR* is 2(d2 + d)(∆f/εf )
2. If we set εf ≥ (∆f/∆f̃ )ε, PFLR* injects

less noise.

8.4 Experiments

8.4.1 Experiment Setup

Dataset. We evaluate our methods on Adult [95] and Dutch [114]. For both datasets,

we consider “Sex” as protected attribute and “Income” as decision. For unprotected at-

tributes, we convert categorical attributes to one-hot vectors and normalize numerical at-

tributes to x ∈ [0, 1]. The Adult dataset has 45222 records and 40 features. The Dutch

dataset has 60420 records and 35 features.

Baselines. We compare the proposed differentially private and fair logistic regression

models (PFLR and PFLR*) with the following baselines: 1) a regular logistic regression
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Table 8.1: Accuracy and risk difference (mean ± std.) of each method (ε = 1)

Method
Adult Dutch

Accuracy Risk Difference Accuracy Risk Difference

LR 0.8380 ± 0.0023 0.1577 ± 0.0064 0.8164 ± 0.0048 0.1747 ± 0.0033

PrivLR 0.7238 ± 0.0612 0.0502 ± 0.0581 0.6412 ± 0.0458 0.0739 ± 0.0574

FairLR 0.7739 ± 0.0521 0.0095 ± 0.0071 0.7673 ± 0.0064 0.0299 ± 0.0067

PFLR 0.7400 ± 0.0182 0.0213 ± 0.0258 0.6278 ± 0.0408 0.0206 ± 0.0204

PFLR* 0.7552 ± 0.0092 0.0053 ± 0.0070 0.6482 ± 0.0188 0.0430 ± 0.0265

model (LR); 2) a differentially private only LR using functional mechanism (PrivLR); 3) a

fair only LR using Equation 3.17 as the fairness constraint (FairLR).

Metrics. We evaluate the performance of the proposed approaches and baselines

on utility and fairness. We use accuracy as the utility metric and risk difference (RD) as

the fairness metric. We run all models 10 times for each setting and report the mean and

standard deviation of each metric.

8.4.2 Experimental Results

We first compare the performance of all five methods when ε = 1 ( εf = ε/2 in

PFLR*). As shown in Table 8.1, the regular logistic regression (LR) achieves the accuracy

of 0.8380 on Adult and 0.8164 on Dutch, but it doesn’t protect privacy nor achieves fairness

(RD = 0.1577 and 0.1747, respectively). PrivLR has privacy protection but the accuracy

decreases 11.42% on Adult and 17.52% on Dutch compared with LR as the result of the

trade-off between privacy and utility. The risk difference of PrivLR is lower than LR, yet

still larger than 0.05. The decrease of risk difference is mostly due to its low accuracy instead

of fairness. FairLR achieves fairness (RD = 0.0095 on Adult and RD = 0.0299 on Dutch)

as expected but it has no privacy guarantee. For PFLR and PFLR*, they both meet the

privacy and fairness requirements. PFLR* has significantly higher accuracy than PFLR on

both datasets (based on t-tests with p-values < 0.05). It indicates that PFLR* adds less
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Table 8.2: Accuracy and risk difference with different privacy budgets ε

ε
PrivLR PFLR PFLR*

Accuracy Risk Difference Accuracy Risk Difference Accuracy Risk Difference

Adult

0.1 0.6263 ± 0.1480 0.0883 ± 0.0805 0.6172 ± 0.1187 0.0351 ± 0.0493 0.7491 ± 0.0040 0.0028 ± 0.0039
1 0.7238 ± 0.0612 0.0502 ± 0.0581 0.7400 ± 0.0182 0.0213 ± 0.0258 0.7552 ± 0.0092 0.0053 ± 0.0070
10 0.7270 ± 0.0877 0.1459 ± 0.0798 0.7631 ± 0.0155 0.0338 ± 0.0255 0.7632 ± 0.0093 0.0204 ± 0.0140
100 0.8295 ± 0.0032 0.1624 ± 0.0116 0.7835 ± 0.0318 0.0332 ± 0.0243 0.7913 ± 0.0200 0.0234 ± 0.0189

Dutch

0.1 0.5241 ± 0.0396 0.0317 ± 0.0187 0.5069± 0.0459 0.0441 ± 0.0245 0.6158 ± 0.0239 0.0516 ± 0.0204
1 0.6412 ± 0.0458 0.0739 ± 0.0574 0.6278 ± 0.0408 0.0206 ± 0.0204 0.6482 ± 0.0188 0.0460 ± 0.0265
10 0.7239 ± 0.0902 0.1346 ± 0.0563 0.7282 ± 0.0493 0.0211 ± 0.0152 0.7080 ± 0.0329 0.0220 ± 0.0208
100 0.8154 ± 0.0042 0.1687 ± 0.0054 0.7681 ± 0.0054 0.0301 ± 0.0085 0.7618 ± 0.0144 0.0250 ± 0.0128

noise to meet the same level of privacy guarantee.

Different Privacy Budgets. Table 8.2 shows how different settings of privacy bud-

get ε affect our two methods and PrivLR. For PrivLR, its accuracy decreases dramatically

when a stronger privacy requirement (smaller ε) is enforced. The risk difference of PrivLR

decreases with the decrease of ε (the increase of noise). When ε is large, the accuracy is good

and the risk difference is high. When ε is small, the accuracy is bad and the risk difference

is low but with high variance.

For PFLR and PFLR*, when ε = 0.1, 1, PFLR* has significantly higher accuracy

than PFLR on both Adult and Dutch (based on t-tests with p-values < 0.05). Especially,

when ε = 0.1, PFLR’s accuracy is only 0.6172 on Adult and 0.5069 on Dutch while PFLR*’s

accuracy is 0.7491 on Adult and 0.6158 on Dutch. The accuracy of PFLR* is more consistent

and relatively more resilient under different settings of privacy budget ε. When ε is relaxed

to 100, PFLR and PFLR* have similar accuracy to FairLR (shown in Table 8.2). Overall,

PFLR* outperforms PFLR especially when privacy budget is small.

Different Privacy Budget Splits εf/ε for PFLR*. PFLR* splits the privacy

budget (ε = εf + εg) into two parts: computing the fairness constraint (εg) and building

the classification model (εf ). Therefore, there is a trade-off between fairness and utility by

controlling εf/ε. We further evaluate the performance of PFLR* in terms of accuracy and risk
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(a) Accuracy (b) Risk difference

Figure 8.1: PFLR* with different privacy budget splits εf/ε (Adult dataset, ε = 10)

difference with various privacy budget splits by ranging the values of εf/ε from 0.05 to 0.95

with an interval as 0.05. In Fig. 8.1a, we observe that with the increase of εf , the accuracy

increases accordingly. This is because when εf keeps increasing, the privacy budget for the

objective function becomes large, which reduces noise added to the classification model. For

the risk difference, as shown in Fig. 8.1b, when εf increases, the risk difference increases.

This is because PFLR* injects more noise to compute the fairness constraint. However, the

risk difference is consistently smaller than 0.05 while increasing εf . Hence, as the result of a

small sensitivity ∆g, the utility of fairness constraint is well preserved even with a small εg.

8.5 Summary

In this work, we developed two differentially private and fair logistic regression models,

PFLR and PFLR*. PFLR is to apply the functional mechanism to the objective function

with fairness constraint as a penalty term. Our enhanced model, PFLR*, takes advantage

of the connection between ways of achieving differential privacy and fairness and adds the
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Laplace noise with non-zero mean. The experimental results on two datasets demonstrate

the effectiveness of two approaches and show the superiority of PFLR*. In this work, we

consider logistic regression as the classification model and the covariance between decision

boundary and the protected attribute as the fairness constraint. The early version of this

work is published at WWW Workshop: FATES 2019 [73].
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9 Removing Disparate Impact of Differentially Private Stochastic Gradient

Descent on Model Accuracy

9.1 Introduction

In this work, we study the inequality in utility loss due to differential privacy, which

compares the changes in prediction accuracy w.r.t. each group between the private model

and the non-private model. Differential privacy guarantees that the query results or the

released model cannot be exploited by attackers to derive whether one particular record is

present or absent in the underlying dataset [1]. When we enforce differential privacy onto a

regular non-private model, the model trades some utility off for privacy. On one hand, with

the impact of differential privacy, the within-model unfairness in the private model may be

different from the one in the non-private model [74, 73, 75]. On the other hand, differential

privacy may introduce additional discriminative effect towards the protected group when we

compare the private model with the non-private model. The utility loss between the private

and non-private models w.r.t. each group, such as reduction in group accuracy, may be

uneven. The intention of differential privacy should not be to introduce more accuracy loss

on the protected group regardless of the level of within-model unfairness in the non-private

model.

There are several empirical studies on the relationship between the utility loss due

to differential privacy and groups with different represented sample sizes. Research in [76]

shows that the accuracy of private models tends to decrease more on classes that already

have lower accuracy in the original, non-private model. In their case, the direction of in-

equality in utility loss due to differential privacy is the same as the existing within-model
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discrimination against the underrepresented group in the non-private model, i.e. “the poor

become poorer”. Research in [115] shows the similar observation that the contribution of

rare training examples is hidden by random noise in differentially private stochastic gradient

descent, and that random noise slows down the convergence of the learning algorithm. Re-

search in [116] shows different observations when they analyze if the performance on emotion

recognition is affected in an imbalanced way for the models trained to enhance privacy. They

find that while the performance is affected differently for the subgroups, the effect is not con-

sistent across multiple setups and datasets. In their case, there is no consistent direction of

inequality in utility loss by differential privacy against the underrepresented group. Hence,

the impact of differential privacy on group accuracy is more complicated than the observa-

tion in [76] (details in Section 9.3.1). It needs to be cautionary to conclude that differential

privacy introduces more utility loss on the underrepresented group. The bottom line is that

the objective of differential privacy is to protect individual’s privacy instead of introducing

unfairness in the form of inequality in utility loss w.r.t. groups. Though the privacy metric

increases when a model is adversarially trained to enhance privacy, we need to ensure that

the performance of the model on that dataset does not harm one subgroup more than the

other.

In this work, we first analyze the inequality in utility loss by differential privacy. We

use “cost of privacy” to refer to the utility loss between the private and non-private models

as the result of the utility-privacy trade-off. We study the cost of privacy w.r.t. each group

in comparison with the whole population and explain how the group sample size is related to

the privacy impact on group accuracy along with other factors (Section 9.3.2). The difference

in group sample sizes leads to the difference in average group gradient norms, which results

in different group clipping biases under the uniform clipping bound. It costs less utility
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trade-off to achieve the same level of differential privacy for the group with larger group

sample size and/or smaller group clipping bias. In other words, the group with smaller group

sample size and/or larger group clipping bias incurs more utility loss when the algorithm

achieves the same level of differential privacy w.r.t. each group. Furthermore, we propose a

modified DPSGD algorithm, called DPSGD-F, to remove the potential inequality in utility

loss among groups (Section 9.4.2). DPSGD-F adjusts the contribution of samples in a group

depending on the group clipping bias. For the group with smaller cost of privacy, their

contribution is decreased and the achieved privacy w.r.t. their group is stronger; and vise

versa. As a result, the final utility loss is the same for each group, i.e. differential privacy has

no disparate impact on group accuracy in DPSGD-F. Our evaluation shows the effectiveness

of our removal algorithm on achieving equal costs of privacy with satisfactory utility (Section

9.5).

9.2 Preliminaries

Let D be a dataset with n tuples x1, x2, · · · , xn, where each tuple xi includes the

information of a user i on d unprotected attributes A1, A2, · · · , Ad, the protected attribute

S, and the decision Y . Let Dk denote a subset of D with the set of tuples with S = k. Given

an set of examples D, the non-private model outputs a classifier η(a;w) with parameter w

which minimizes the loss function LD(w) = 1
n

∑n
i=1 Li(w). The optimal model parameter

w∗ is defined as: w∗ = arg min
w

1
n

∑n
i=1 Li(w). A differentially private algorithm outputs a

classifier η̃(a; w̃) by selecting w̃ in a manner that satisfies differential privacy while keeping

it close to the actual optimal w∗.

For general preliminaries of differential privacy and fairness-aware machine learning,

please refer to Chapter 3.1 and Chapter 3.2, respectively.
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9.3 Disparate Impact on Model Accuracy

In this section, we first discuss how differentially private learning, specifically DPSGD,

causes inequality in utility loss through our preliminary observations. Then we study the cost

of privacy with respect to each group in comparison with the whole population and explain

how group sample size is related to the privacy impact on group accuracy along with other

factors.

9.3.1 Preliminary Observations

To explain why DPSGD has disparate impact on model accuracy w.r.t. each group,

[76] constructs an unbalanced MNIST dataset to study the effects of gradient clipping, noise

addition, the size of the underrepresented group, batch size, length of training, and other

hyperparameters. Training on the data of the underrepresented subgroups produces larger

gradients, thus clipping reduces their learning rate and the influence of their data on the

model. They also show random noise addition has the biggest impact on the underrepresented

inputs. However, [116] reports inconsistent observations on whether differential privacy has

negative discrimination towards the underrepresented group in terms of reduction in accu-

racy. To complement their observations, we use the unbalanced MNIST dataset used in [76]

to reproduce their result, and we also use two benchmark census datasets (Adult and Dutch)

in fair machine learning to study the inequality of utility loss due to differential privacy. We

include the setup details in Section 9.5.1. Table 9.1 shows the model accuracy w.r.t. the

total population, the majority group and the minority group for SGD and DPSGD on the

MNIST, Adult and Dutch datasets.

On the unbalanced MNIST dataset, the minority group (class 8) has significantly
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Table 9.1: Model accuracy w.r.t. the total population, the majority group and the minority
group for SGD and DPSGD on the unbalanced MNIST (ε = 6.55, δ = 10−6), the original
Adult (ε = 3.1, δ = 10−6) and the original Dutch (ε = 2.66, δ = 10−6) datasets

Dataset MNIST Adult Dutch

Group Total Class 2 Class 8 Total M F Total M F

Sample size 54649 5958 500 45222 30527 14695 60420 30273 30147

SGD 0.9855 0.9903 0.9292 0.8099 0.7610 0.9117 0.7879 0.8013 0.7744

DPSGD 0.8774 0.9196 0.2485 0.7507 0.6870 0.8836 0.6878 0.6479 0.7278

DPSGD vs. SGD -0.1081 -0.0707 -0.6807 -0.0592 -0.0740 -0.0281 -0.1001 -0.1534 -0.0466

larger utility loss than the other groups in private model. DPSGD only results in −0.0707

decrease in accuracy on the well-represented classes but accuracy on the underrepresented

class drops −0.6807, exhibiting a disparate impact on the underrepresented class. Figure

9.1 shows that the small sample size reduces both the convergence rate and the optimal

utility of class 8 in DPSGD in comparison with the non-private SGD. The model is far

from converging, yet clipping and noise addition do not let it move closer to the minimum

of the loss function. Furthermore, the addition of noise, whose magnitude is similar to the

update vector, prevents the clipped gradients of the underrepresented class from sufficiently

updating the relevant parts of the model. Training with more epochs does not reduce this gap

while exhausting the privacy budget. Differential privacy also slows down the convergence

and degrades the utility for each group. Hence, DPSGD introduces negative discrimination

against the minority group (which already has lower accuracy in the non-private SGD model)

on the unbalanced MNIST dataset. This matches the observation in [76].

However, on the Adult and Dutch datasets, we have different observations from

MNIST. The Adult dataset is an unbalanced dataset, where the female group is under-

represented. Even though the male group is the majority group, it has lower accuracy in

the SGD and more utility loss in DPSGD than the female group. The Dutch dataset is a

balanced dataset, where the group sample sizes are similar for male and female. However,
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Figure 9.1: The average loss and the average gradient norm w.r.t. class 2 and 8 over epochs
for SGD and DPSGD on the MNIST dataset (Balanced: ε = 6.23, δ = 10−6, Unbalanced:
ε = 6.55, δ = 10−6)

Figure 9.2: The average loss and the average gradient norm w.r.t. male and female groups
over epochs for SGD and DPSGD on the original Adult and the original Dutch datasets
(Adult: ε = 3.1, δ = 10−6, Dutch: ε = 2.66, δ = 10−6)
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DPSGD introduces more negative discrimination against the male group and its direction

(male group loses more accuracy due to DP) is even opposite to the direction of within-

model discrimination (female group has less accuracy in SGD). Figure 9.2 shows that the

average gradient norm is much higher for the male group in DPSGD on both datasets. It is

not simply against the group with smaller sample size or lower accuracy in the SGD. Hence,

differential privacy does not always introduce more accuracy loss to the minority group on

the Adult and Dutch datasets. This matches the observation in [116].

From the preliminary observations, we learn that the disproportionate effect from

differential privacy is not guaranteed towards the underrepresented group or the group with

“poor” accuracy. Why does differential privacy cause inequality in utility loss w.r.t. each

group? It may depend on more than just the represented sample size of each group: the clas-

sification model, the mechanism to achieve differential privacy, and the relative complexity

of data distribution of each group subject to the model. One common observation across

all settings is that the group with more utility loss has larger gradients and worse conver-

gence. The underrepresented class 8 has average gradient norm of over 100 and bad utility in

DPSGD. The male group has much larger average gradient norm than the female group in

DPSGD on both Adult and Dutch datasets. It is important to address the larger gradients

and worse convergence directly in order to mitigate inequality in utility loss.

9.3.2 Analysis on Cost of Privacy w.r.t. Each Group

In this section, we conduct analysis on the cost of privacy from the viewpoint of a

single batch, where the utility loss is measured by the expected error of the estimated private

gradient w.r.t. each group. For ease of discussion, our analysis follows [54] that investigates

the bias-variance trade-off due to clipping in DPSGD with Laplace noise. Suppose that Bt
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is a collection of b samples, x1, · · · , xb. Each xi corresponds to a sample and generates the

gradient gi. We would like to estimate the average gradient GB from Bt in a differentially

private way while minimizing the objective function.

We denote the original gradient before clipping GB = 1
b

∑b
i=1 gi, the gradient after

clipping but before adding noise ḠB = 1
b

∑b
i=1 ḡi, and the gradient after clipping and adding

noise G̃B = 1
b
(
∑b

i=1 ḡi+Lap(
C
ε
)). The expected error of the estimate G̃B consists of a variance

term (due to the noise) and a bias term (due to the contribution limit):

E|G̃B −GB| ≤ E|G̃B − ḠB|+ |ḠB −GB| ≤
1

b

C

ε
+

1

b

b∑
i=1

max(0, |gi| − C).

In the above derivation, we base the fact that the mean absolute deviation of a Laplace

variable is equal to its scale parameter. We can find the optimal C by noting that the bound

is convex with sub-derivative 1
ε
− |{i : gi > C}|, thus the minimum is achieved when C is

equal to the d1/εeth largest value in gradients.

The expected error is tight as we have

E|G̃B −GB| ≥
1

2

[
1

b

C

ε
+

1

b

b∑
i=1

max(0, |gi| − C)

]
.

In other words, the limit we should choose is just the (1− 1/bε)-quantile of the gradients

themselves.

For the same batch of samples, we derive the cost of privacy w.r.t. each group. Suppose

the batch of samples Bt are from K groups and group k has sample size bk. We have Gk
B =

1
bk

∑bk

i=1 g
k
i and GB =

1

b

∑K
k=1 b

kGk
B. DPSGD bounds the sensitivity of gradient by clipping

each sample’s gradient with a clipping bound C. Ḡk
B = 1

bk

∑bk

i=1 ḡ
k
i = 1

bk

∑bk

i=1 g
k
i ×min(1, C

|gki |
).
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Then, DPSGD adds Laplace noise on the sum of clipped gradients. G̃k
B = 1

bk
(bkḠk

B+Lap(C
ε
)).

The expected error of the estimate G̃k
B also consists of a variance term (due to the noise)

and a bias term (due to the contribution limit):

E|G̃k
B −Gk

B| ≤ E|G̃k
B − Ḡk

B|+ |Ḡk
B −Gk

B|

≤ 1

bk
C

ε
+

1

bk

bk∑
i

max(0, |gki | − C) =
1

bk
C

ε
+

1

bk

mk∑
i

(|gki | − C),

(9.1)

where mk = |{i : |gki | > C}| is the number of examples that get clipped in group k. Similarly,

we can get the tight bound w.r.t. each group k is E|G̃k
B−Gk

B| ≥ 1
2

[
1
bk
C
ε

+ 1
bk

∑bk

i max(0, |gki | − C)
]
.

From Equation 9.1, we know the utility loss of group k, measured by the expected error

of the estimated private gradient, is bounded by two terms, the bias 1
bk

∑bk

i max(0, |gki | −C)

due to contribution limit (depending on the size of gradients and the size of clipping bound)

and the variance of the noise 1
bk
C
ε

(depending on the scale of the noise). Next, we discuss

their separate impacts in DPSGD.

Given the clipping bound C, the bias due to clipping w.r.t. the group with large

gradients is larger than the one w.r.t. the group with small gradients. Before clipping, the

group with large gradients has large contribution in the total gradient GB in SGD, but it is

not the case in DPSGD. The direction of the total gradient after clipping ḠB is closer to the

direction of the gradient of the group with small bias (small gradients) in comparison with

the direction of the total gradient before clipping GB. Due to clipping, the contribution and

convergence of the group with large gradients are reduced.

The added noise increases the variance of the model gradient, as it tries to hide the

influence of a single record on the model. It slows down the convergence rate of the model.

Because the noise scalesC
ε

and the sensitivity of clipped gradients C are the same for all
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groups, the noisy gradients of all groups achieve the same level of differential privacy ε. The

direction of the noise is random, i.e., it does not favor a particular group in expectation.

Overall in DPSGD, the group with large gradients has larger cost of privacy, i.e., they

have more utility loss to achieve ε level of differential privacy under the same clipping bound

C.

We can also consider the optimal choice of C which is (1− 1
bε

)-quantile for the whole

batch. For each group, the optimal choice of Ck is (1− 1
bkε

)-quantile for group k. The distance

between C and Ck is not the same for all groups, and C is closer to the choice of Ck for the

group with small bias (small gradients).

Now we look back on the preliminary observations in Section 9.3.1. On MNIST, the

group sample size affects the convergence rate for each group. The group with large sample

size (the majority group, class 2) has larger contribution in the total gradient than the group

with small sample size (the minority group, class 8), and therefore it leads to a relatively

faster and better convergence. As the result, the gradients of the minority group are larger

than the gradients of the majority group later on. In their case, the small sample size is the

main cause of large gradient norm and large utility loss in class 8. On Adult and Dutch, the

average bias due to clipping for each group is different because the distributions of gradients

are quite different. The average gradient norm of the male group is larger than the average

gradient norm of the female group, even though the male group is not underrepresented.

As the result, the male group’s contribution is limited due to clipping and it has larger

utility loss in DPSGD. In there case, the group sample size is not the only reason to cause

difference in the average gradient norm, and the other factors (e.g., the relative complexity

of data distribution of each group subject to the model) out-weighs sample size, so the

well-represented male group has larger utility loss.
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This gives us an insight on the relation between differential privacy and the inequality

in utility loss w.r.t. each group. The direct cause of the inequality is the large cost of privacy

due to large average gradient norm (which can be caused by small group sample size along

with other factors). In DPSGD, the clipping bound is selected uniformly for each group

without consideration of the difference in clipping biases. As a result, the noise addition

to achieve (ε, δ)-differential privacy on the learning model results in different utility-privacy

trade-off for each group, where the underrepresented or the more complex group incurs a

larger utility loss. After all, DPSGD is designed to protect individual’s privacy with nice

properties without consideration of its different impact towards each group. In order to

avoid disparate utility loss among groups, we need to modify DPSGD such that each group

needs to achieve different level of privacy to counter their difference in costs of privacy.

9.4 Removing Disparate Impact

Our objective is to build a learning algorithm that outputs a classifier η̃(a; w̃) with

parameter w̃ that achieves differential privacy, equality of utility loss w.r.t each group, and

good accuracy. Based on our preliminary observation and analysis on cost of privacy, we

propose a heuristic removal algorithm to achieve equal utility loss w.r.t. each group, called

DPSGD-F.

9.4.1 Equal Costs of Differential Privacy

In the within-model fairness, equal odds results in the equality of accuracy for different

groups. Note that equal accuracy does not result in equal odds. As a trade-off for privacy,

differential privacy results in accuracy loss on the model. However, different groups may incur

different levels of accuracy loss. We use reduction in accuracy w.r.t. group k to measure utility
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loss between the private model η̃ and the non-privacte model η, denoted by ∆k. We define a

new fairness notion called equal costs of differential privacy, which requires that the utility

loss due to differential privacy is the same for all groups.

Definition 17. Equal costs of differential privacy Given a labeled dataset D, a classifier

η and a differentially private classifier η̃, a differentially private mechanism satisfies equal

equal costs of privacy if

∆i(η̃ − η) = ∆j(η̃ − η),

where i, j are any two values of the protected attribute S.

9.4.2 Removal Algorithm

We propose a heuristic approach for differentially private SGD that removes disparate

impact across different groups. The intuition of our heuristic approach is to balance the level

of privacy w.r.t. each group based on their utility-privacy trade-off. Algorithm 7 shows the

framework of our approach. Instead of uniformly clipping the gradients for all groups, we

propose to do adaptive sensitive clipping where each group k gets its own clipping bound Ck.

For the group with larger clipping bias (due to large gradients), we choose a larger clipping

bound to balance their higher cost of privacy. The large gradients may be due to group

sample size or other factors.

Based on our observation and analysis in the previous section, to balance the difference

in costs of privacy for each group, we need to adjust the clipping bound Ck such that the

contribution of each group is proportional to the size of their average gradient (Line 14

in Algorithm 7). Ideally, we would like to adjust the clipping bound based on the private

estimate of the average gradient norm. However, the original gradient before clipping has
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Algorithm 7 DPSGD-F (Dataset D, loss function LD(w), learning rate r, batch size b,
noise scales σ1, σ2, base clipping bound C0)

1: for t ∈ [T ] do
2: Randomly sample a batch of samples Bt with |Bt| = b from D
3: for each sample xi ∈ Bt do
4: gi = OLi(wt)
5: end for
6: for each group k ∈ [K] do
7: mk =

∣∣{i : |gki | > C0

}∣∣
8: ok =

∣∣{i : |gki | ≤ C0

}∣∣
9: end for

10:
{
m̃k, õk

}
k∈[K]

=
{
mk, ok

}
k∈[K]

+N(0, σ2
1I)

11: m̃ =
∑

k∈[K] m̃
k

12: for each group k ∈ [K] do
13: b̃k = m̃k + õk

14: Ck = C0 ×
(

1 + m̃k/b̃k

m̃/b

)
15: end for
16: for each sample xi ∈ Bt do

17: ḡi = gi ×min
(

1, C
k

|gi|

)
18: end for
19: C = max

k
Ck

20: G̃B = 1
b

(
∑

i ḡi +N(0, σ2
2C

2I))

21: w̃t+1 = w̃t − rG̃B

22: end for
23: Return w̃T and accumulated privacy cost (ε, δ)

unbounded sensitivity. It would not be practical to get its private estimate. We need to

construct a good approximate estimate of the relative size of the average gradient w.r.t. each

group and it needs to have a small sensitivity for private estimation.

In our algorithm, we choose adaptive clipping bound Ck based on the mk, where

mk = |{i : |gki | > C0}|. To avoid the influence of group sample size, we use the fraction

of mk

bk
that represents the fraction of samples in the group with gradients larger than C0.

The relative ratio of mk

bk
and m

b
can approximately represent the relative size of the average

gradient (Line 14). To choose the clipping bound Ck for group k in a differentially private

way, we get the private m̃k, b̃k and m̃ from the collection {mk, ok}k∈[K] (Line 6-13). The
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collection {mk, ok}k∈[K] has sensitivity of 1, which is much smaller than the sensitivity of the

actual gradients when we estimate the relative size of the average gradient.

After the adaptive clipping, the sensitivity of the clipped gradient of group k is Ck =

C0 × (1 + m̃k/b̃k

m̃/b
). The sensitivity of the clipped gradient of the total population would be

maxk C
k as the worst case in the total population needs to be considered.

Note that in Algorithm 7 we have two steps of adding noise in each iteration t. We

first use a relatively large noise scale σ1 (small privacy budget) to get a private collection

{m̃k, õk}k∈[K] (Line 10). Then we use a relatively small noise scale σ2 to perturb the gra-

dients (Line 20). The composition theorem (Theorem 4) is applied when we compute the

accumulated privacy cost (ε, δ) from moments accountant (Line 23). Because σ1 > σ2, only

a small fraction of privacy budget is spent on getting Ck.

For the total population, Algorithm 7 still satisfies (ε, δ)-differential privacy as it

accounts for the worst clipping bound max
k
Ck. On the group level, each group achieves

different levels of privacy depending on their utility-privacy trade-off.

With our modified DPSGD algorithm, we continue our discussion in Secion 9.3.2.

In the case of [76], the difference in gradient norms is primarily decided by group sample

size. Consider a majority group s+ and a minority group s−. In Algorithm 1, each group

achieves the same level of privacy, but the underrepresented group s− has higher privacy cost

(utility loss). In Algorithm 7, we choose a higher clipping bound C− for the underrepresented

group. Because the noise scale is C
ε

= C−

ε
and the sensitivity of clipped gradients for the

underrepresented group is C−, the noisy gradient w.r.t. the underrepresented group achieves

ε-differential privacy. The well-represented group s+ has a smaller cost of privacy, so we

choose a lower clipping bound C+. Because the noise scale is C
ε

= C−

ε
and the sensitivity

of clipped gradients for the underrepresented group is C+, the noisy gradient w.r.t. the
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underrepresented group then achieves (C
+

C−
ε)-differential privacy. Two groups have different

clipping bounds C+, C− and the same noise addition based on C = max(C+, C−) (same

ε but different relative scales w.r.t. their group sensitivities). Hence, when we enforce the

same level of utility loss for groups with different sample sizes, the well-represented group

achieves stronger privacy (smaller than ε) than the underrepresented group. In the case of

Adult/Dutch, the male group has larger gradients regardless of the sample size. The group

with smaller gradients based on model and data distribution has smaller cost of privacy.

Algorithm 7 can adjust the clipping bound for each group. As a result, the group with smaller

gradients achieves stronger level of privacy. Eventually, they can have similar clipping bias

to the ones in Algorithm 1.

9.4.3 Baseline

There is no previous work on how to achieve equal utility loss in DPSGD. For exper-

imental evaluation, we also present a näıve baseline algorithm based on reweighting (shown

as Algorithm 8) in this section, since reweighting is a common way to mitigating biases in

machine learning. The näıve algorithm considers group sample size as the main cause of dis-

proportional impact in DPSGD and adjusts sample contribution of each group to mitigate

the impact of sample size.

For the group with larger group sample size, we reweight the sample contribution

with θk ∝ 1
b̃k

instead of using uniform weight of 1 for all groups, where b̃k is privately

estimated (Line 6 in Algorithm 8). Note that GB in Algorithm 1 is estimated based on

uniform weight of each sample regardless of their group membership. The sensitivity for

group k is Ck = C0 × θk. The sensitivity for the total population would be C0 × maxk θ
k.

The result also matches the idea that we limit the sample contribution of the group with
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Algorithm 8 Näıve (Dataset D, loss function LD(w), learning rate r, batch size b, noise
scales σ1, σ2, base clipping bound C0)

1: for t ∈ [T ] do
2: Randomly sample a batch of samples Bt with |Bt| = b from D
3: for each sample xi ∈ Bt do
4: gi = OLi(wt)
5: end for
6:

{
b̃k
}
k∈[K]

=
{
bk
}
k∈[K]

+N(0, σ2
1I)

7: for each group k ∈ [K] do

8: θk = 1× b/K

b̃k

9: end for
10: for each sample xi ∈ Bt do

11: ḡi = θk × gi ×min
(

1, C0

|gi|

)
12: end for
13: C = C0 ×max

k
θk

14: G̃B = 1
b

(
∑

i ḡi +N(0, σ2
2C

2I))

15: w̃t+1 = w̃t − rG̃B

16: end for
17: Return w̃T and accumulated privacy cost (ε, δ)

smaller cost of privacy to achieve stronger privacy level w.r.t. the group. However, Näıve

only considers the group sample size. As we know from previous observation and analysis,

the factors that affect the gradient norm and bias due to clipping are more complex than

just the group sample size. We will compare with this Näıve approach as a baseline in our

experiments.

9.5 Experiments

9.5.1 Experiment Setup

9.5.1.1 Datasets

We use MNIST dataset and replicate the setting in [76]. The original MNIST dataset

is a balanced dataset with 60,000 training samples and each class has about 6,000 samples.
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Class 8 has the most false negatives, hence we choose it as the artificially underrepresented

group (reducing the number of training samples from 5,851 to 500) in the unbalanced MNIST

dataset. We compare the underrepresented class 8 with the well-represented class 2 that

shares fewest false negatives with the class 8 and therefore can be considered independent.

The testing dataset has 10,000 testing samples with about 1,000 for each class.

We also use two census datasets, Adult [95] and Dutch [114]. For both datasets,

we consider “Sex” as the protected attribute and “Income” as decision. For unprotected

attributes, we convert categorical attributes to one-hot vectors and normalize numerical

attributes to [0, 1] range. After preprocessing, we have 40 unprotected attributes for Adult

and 35 unprotected attributes for Dutch. The original Adult dataset has 45,222 samples

(30,527 males and 14,695 females). We sample a balanced Adult dataset with 14,000 males

and 14,000 females. The original Dutch dataset is close to balanced with 30,273 males and

30,147 females. We sample an unbalanced Dutch dataset with 30,000 males and 10,000

females. In all settings, we split the census datasets into 80% training data and 20% testing

data.

9.5.1.2 Model

For the MNIST dataset, we use a neural network with 2 convolutional layers and

2 linear layers with 431K parameters in total. We use learning rate r = 0.01, batch size

b = 256, and the number of training epochs is 60.

For the census datasets, we use a logistic regression model with regularization param-

eter 0.01. We use learning rate r = 1/
√
T , batch size b = 256, and the number of training

epochs is 20.
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9.5.1.3 Baseline

We compare our proposed method DPSGD-F (Algorithm 7) with the original DPSGD

(Algorithm 1) and the Näıve approach (Algorithm 8). For each setting, the learning parame-

ters are the same. We set C0, σ2 in DPSGD-F and Näıve equal to C, σ in DPSGD, respectively.

We set σ1 = 10σ2. For the MNIST dataset, we set noise scale σ = 0.8, clipping bound C = 1,

and δ = 10−6. For the census datasets, we set noise scale σ = 1, clipping bound C = 0.5, and

δ = 10−6. The accumulated privacy budget ε for each setting is computed using the privacy

moments accounting method [38]. Because we set σ1 = 10σ2, most of ε is spent on gradients

from σ2. Only about 0.01 budget is from σ1. To compare DPSGD-F and Näıve with DPSGD

under the same privacy budget, the algorithm runs a few less iterations than DPSGD in the

last epoch, where the total number of iterations T = epochs×n/b in SGD and DPSGD. For

DPSGD-F and Näıve, T is 22 and 19 less on the balanced and unbalanced MNIST datasets,

respectively; 5 and 11 less on the balanced and unbalanced Adult datasets, respectively; 17

and 9 less on the balanced and unbalanced Dutch datasets, respectively. These differences

are very small in proportion to T . All DP models are compared with the non-private SGD

when we measure the utility loss due to differential privacy.

9.5.1.4 Metric

We use the test data to measure the model utility and fairness. Based on Section

17, we use reduction in model accuracy for each group between the private SGD and the

non-private SGD (∆k) as the metric to measure the cost of differential privacy w.r.t. each

group. The difference between the costs on groups (|∆i − ∆j| for any i, j) measures the

level of inequality in utility loss due to differential privacy. If the costs for all groups are

independent of the protected attribute (|∆i − ∆j| ≤ τ , τ = 0.05 used in the paper), we
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Table 9.2: Model accuracy w.r.t. class 2 and 8 on the MNIST dataset (Balanced: ε =
6.23, δ = 10−6, Unbalanced: ε = 6.55, δ = 10−6)

Dataset Balanced Unbalanced

Group Total Class 2 Class 8 Total Class 2 Class 8

Sample size 60000 5958 5851 54649 5958 500

SGD 0.9892 0.9932 0.9917 0.9855 0.9903 0.9292

DPSGD vs. SGD -0.0494 -0.0853 -0.0719 -0.1081 -0.0707 -0.6807

Näıve vs. SGD -0.0491 -0.0891 -0.0687 -0.1500 -0.1512 -0.1510

DPSGD-F vs. SGD -0.0236 -0.0339 -0.0359 -0.0293 -0.0281 -0.0432

consider the private SGD has equal reduction in model accuracy w.r.t. each group, i.e. the

private SGD achieves equal cost of differential privacy. We also report the average loss and

average gradient norm to show the convergence w.r.t. each group during training.

9.5.2 MNIST Dataset

Table 9.2 shows the model accuracy w.r.t. class 2 and 8 on the balanced and unbal-

anced MNIST datasets. On the balanced dataset, each private or non-private model achieves

similar accuracy across all groups. When we artificially reduce the sample size of class 8,

class 8 becomes the minority group in the unbalanced dataset. The non-private SGD model

converges to 0.9292 accuracy on class 8 vs. 0.9903 accuracy on class 2. The DPSGD model

causes −0.6807 accuracy loss on class 8 vs. −0.0707 on class 2, which exhibits a significant

disparate impact on the underrepresented class. The Näıve approach achieves −0.1510 ac-

curacy loss on class 8 vs. −0.1512 on class 2, which achieves equal costs of privacy. Our

DPSGD-F algorithm has −0.0432 accuracy loss on class 8 vs. −0.0281 on class 2, which

also achieves equal costs of privacy. The total model accuracy also drops less for DPSGD-F

(−0.0293) than the original DPSGD (−0.1081). Figure 9.3 shows the model accuracy w.r.t.

all classes on the MNIST dataset. The difference between DPSGD and DPSGD-F is small

and consistent across all classes.
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(a) Balanced: ε = 6.23, δ = 10−6 (b) Unbalanced: ε = 6.55, δ = 10−6

Figure 9.3: Model accuracy w.r.t. each class for SGD, DPSGD, Näıve and DPSGD-F on
the MNIST dataset

Table 9.3: The average loss and the average gradient norm w.r.t. groups at the last training
epoch on the unbalanced MNIST (ε = 6.55, δ = 10−6), the unbalanced Adult (ε = 3.1, δ =
10−6) and the unbalanced Dutch (ε = 3.29, δ = 10−6) datasets

Average loss Average gradient norm

Dataset MNIST Adult Dutch MNIST Adult Dutch

Group Class 2 Class 8 M F M F Class 2 Class 8 M F M F

SGD 0.04 0.04 0.48 0.27 0.49 0.58 0.68 4.76 0.08 0.11 0.12 0.30

DPSGD 0.41 2.16 0.68 0.31 0.52 0.83 13.53 100.46 0.41 0.12 0.11 0.52

Näıve 3.08 1.89 0.71 0.32 0.58 0.55 0.83 0.76 0.43 0.13 0.23 0.17

DPSGD-F 0.20 0.42 0.50 0.27 0.48 0.61 1.45 2.53 0.12 0.08 0.09 0.35
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Figure 9.4: The average loss and the average gradient norm w.r.t. class 2 and 8 over epochs
for SGD, DPSGD, Näıve and DPSGD-F on the unbalanced MNIST dataset (ε = 6.55, δ =
10−6)

Table 9.3 shows the average loss and average gradient norm w.r.t. class 2 and 8 for

SGD and different DP models at the last training epoch. In DPSGD, the average gradient

norm for class 8 is over 100 and the average loss for class 8 is 2.16. Whereas, in DPSGD-F,

the average gradient norm for class 8 is only 2.53 and the average loss for class 8 is only

0.42. The convergence loss and the gradient norm for class 8 are much closer to the ones for

class 2 in DPSGD-F. Figure 9.4 shows the convergence trend during training. The trend in

DPSGD-F is the closest to the trend in SGD among all DP models. It shows our adjusted

clipping bound helps to achieve the same group utility loss regardless of the group sample

size.

Figure 9.5 shows how our adaptive clipping bound changes over epochs in DPSGD-

F. Because class 8 has larger clipping bias due to its underrepresented group sample size,

DPSGD-F gives class 8 a higher clipping bound to increase its sample contribution in the

total gradient. The maximal Ck is close to 3.

To show that the fair performance of DPSGD-F is not caused by increasing clipping
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Figure 9.5: The clipping bound Ck w.r.t. each class over epochs for DPSGD-F on the
unbalanced MNIST dataset (ε = 6.55, δ = 10−6)

Table 9.4: Model accuracy w.r.t. class 2 and 8 for different uniform clipping bound (C =
1, 2, 3, 4, 5) in DPSGD vs. adaptive clipping bound (C0 = 1) in DPSGD-F on the unbalanced
MNIST dataset (ε = 6.55, δ = 10−6)

Group Total Class 2 Class 8
Sample size 54649 5958 500

SGD 0.9855 0.9903 0.9292

DPSGD (C = 1) vs. SGD -0.1081 -0.0707 -0.6807

DPSGD (C = 2) vs. SGD -0.0587 -0.0426 -0.3286

DPSGD (C = 3) vs. SGD -0.0390 -0.0232 -0.2013

DPSGD (C = 4) vs. SGD -0.0286 -0.0194 -0.1376

DPSGD (C = 5) vs. SGD -0.0240 -0.0145 -0.1099

DPSGD-F (C0 = 1) vs. SGD -0.0293 -0.0281 -0.0432

bound uniformly, we run the original DPSGD with increasing clipping bound from C = 1

to C = 5. Table 9.4 shows the level of inequality in utility loss for different clipping bound

in DPSGD vs. the adaptive clipping bound in DPSGD-F. Even though increasing clipping

bound C in DPSGD can improve the accuracy on class 8, there is still significant difference

between the accuracy loss on class 8 (−0.1099 when C = 5) and the accuracy loss on class

2 (−0.0145 when C = 5). This is because the utility-privacy trade-offs are different for the

minority group and the majority group under the same clipping bound. So the inequality
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in utility loss cannot be removed by simply increasing the clipping bound in DPSGD. On

the contrary, DPSGD-F achieves equal costs of privacy by adjusting the clipping bound for

each group according to the utility-privacy trade-off. The group with smaller cost of privacy

achieves a stronger level of privacy as a result of adaptive clipping.

(a) Accuracy loss vs. the number of epochs

(b) Accuracy loss vs. noise scale

Figure 9.6: The accuracy loss on class 2 and 8 (DPSGD-F vs. SGD) with different ε on the
MNIST dataset

We also evaluate the effectiveness of DPSGD-F over different privacy costs. There

are two factors, the number of epochs and the noise scale, affecting the accumulated privacy

cost ε. Figure 9.6a shows the group accuracy loss over different accumulated ε by altering

the number of epochs while setting other parameters the same as default. With the number
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of epochs increasing, the privacy cost ε increases, and the difference between the accuracy

losses of class 2 and 8 decreases. From 60 epochs on, the difference is below the threshold

τ , i.e. DPSGD-F achieves equal costs of privacy. Figure 9.6b shows the group accuracy

loss over different accumulated ε by altering the noise scale while setting others parameters

the same as default. With the noise scale increasing, the privacy cost ε decreases, and the

difference between the accuracy losses of class 2 and 8 slightly increases, yet the difference is

consistently below the threshold τ , i.e. DPSGD-F achieves equal costs of privacy. It suggests

that it is better to enforce stronger privacy by increasing the noise scale than prematurely

terminate training.

9.5.3 Adult and Dutch Datasets

Table 9.5 shows the model accuracy w.r.t. male and female on the balanced and un-

balanced Adult and Dutch datasets. The clipping biases for both census datasets are not

primarily decided by group sample size. We observe disparate impact on DPSGD in compar-

ison to SGD against the male group, even though the male group is not underrepresented.

The Näıve approach does not work at all to achieve equal costs of privacy in this case, as

the importance of group sample size is not as much as in the MNIST dataset. There are still

other factors that affect the gradient norm and the clipping bias w.r.t. each group. DPSGD-

F can achieve similar accuracy loss for male and female in all four settings. It shows the

effectiveness of our approach.

Table 9.3 shows the average loss and average gradient norm w.r.t. male and female for

SGD and different DP models at the last training epoch. On the unbalanced Adult dataset,

the average gradient norm in DPSGD for male is 5 times of the one in SGD and the average

loss in DPSGD for male is 50% more than the one in SGD. Whereas, in DPSGD-F, the
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Table 9.5: Model accuracy w.r.t. the total population and each group on the Adult and
Dutch datasets (Balanced Adult (sampled): ε = 3.99, δ = 10−6, Unbalanced Adult (origi-
nal): ε = 3.1, δ = 10−6, Balanced Dutch (original): ε = 2.66, δ = 10−6, Unbalanced Dutch
(sampled): ε = 3.29, δ = 10−6)

Dataset Balanced Adult Unbalanced Adult Balanced Dutch Unbalanced Dutch

Group Total M F Total M F Total M F Total M F

Sample size 28000 14000 14000 45222 30527 14695 60420 30273 30147 40000 30000 10000

SGD 0.824 0.748 0.899 0.809 0.761 0.911 0.787 0.801 0.774 0.802 0.834 0.706

DPSGD vs. SGD -0.036 -0.054 -0.019 -0.059 -0.074 -0.028 -0.100 -0.153 -0.046 -0.124 -0.086 -0.240

Näıve vs. SGD -0.036 -0.054 -0.019 -0.059 -0.074 -0.028 -0.100 -0.155 -0.046 -0.101 -0.142 0.025

DPSGD-F vs. SGD -0.009 -0.014 -0.005 -0.025 -0.029 -0.016 -0.013 -0.016 -0.009 -0.032 -0.028 -0.044

Figure 9.7: The average loss and the average gradient norm w.r.t. each group over epochs
for SGD, DPSGD, Näıve and DPSGD-F on the unbalanced Adult dataset (ε = 3.1, δ = 10−6)

Figure 9.8: The average loss and the average gradient norm w.r.t. each group over epochs for
SGD, DPSGD, Näıve and DPSGD-F on the unbalanced Dutch dataset (ε = 3.29, δ = 10−6)
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average gradient norm and the average loss for the male group are much closer to the ones in

SGD. Similar to the Adult dataset, on the unbalanced Dutch dataset, the average gradient

norm and the average loss in DPSGD-F for the male group are much closer to the ones in

SGD. Figure 9.7 and 9.8 show the convergence trends on the unbalanced Adult and Dutch

datasets during training. The trends in DPSGD-F is the closest to the trends in SGD among

all DP models. It shows that our adjusted clipping bound helps to achieve the same group

utility loss.

9.6 Summary

Gradient clipping and random noise addition, which are the core techniques in dif-

ferentially private SGD, disproportionately affect underrepresented and complex classes and

subgroups. As a consequence, DPSGD has disparate impact: the accuracy of a model trained

using DPSGD tends to decrease more on these classes and subgroups vs. the original, non-

private model. If the original model is unfair in the sense that its accuracy is not the

same across all subgroups, DPSGD exacerbates this unfairness. In this work, we developed

DPSGD-F to achieve differential privacy, equal costs of differential privacy, and good utility.

DPSGD-F adjusts the contribution of samples in a group depending on the group clipping

bias such that differential privacy has no disparate impact on group utility. Our experimen-

tal evaluation shows how group sample size and group clipping bias affect the impact of

differential privacy in DPSGD, and how adaptive clipping for each group helps to mitigate

the disparate impact caused by differential privacy in DPSGD-F. Gradient clipping in the

non-private context may improve the model robustness against outliers. However, examples

in the minority group are not outliers. They should not be ignored by the (private) learning

model. The early version of this work is posted at arXiv [117].
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10 Conclusion and Future Work

In this chapter, we summarize our works and, based on the observed results and

performance analysis, propose several potential research directions associated with privacy

preserving and fairness-aware machine learning.

10.1 Conclusion

Around privacy preserving and fairness-aware machine learning, in this dissertation,

the works are delivered by addressing the following problems:

1. How to achieve differential privacy in complex and emerging tasks, such as causal graph

discovery and network embedding;

2. How to achieve fair data generation and classification through generative models based

on different fairness notions;

3. How to simultaneously achieve both differential privacy and fairness in logistic regres-

sion;

4. How to ensure the utility loss due to differential privacy is fair towards each group.

Aiming to solve the above challenges, we have done the works as follows.

In Chapter 4, we studied how to preserve differential privacy in constraint-based

causal graph discovery. The naive differentially private PC algorithm requires a large pri-

vacy budget since it adds protection at each conditional independence test. To solve this

problem, we developed a differentially private PC algorithm (PrivPC) based on the expo-

nential mechanism. Because PrivPC reduces the number of edge elimination decisions, it
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reduces the required privacy budget significantly. The proposed PrivPC algorithm is robust

over a wide range of parameter settings. Moreover, the conditionally independent adjacent

set selection strategy achieves high true discovery rates for high-dimensional and dense causal

graphs. Meanwhile, we also developed a Laplace mechanism based differentially private PC

algorithm (PrivPC*) for numerical data. The experimental results also showed that our

algorithms have good performance.

In Chapter 5, we developed a differentially private network embedding method (DPNE)

based on DeepWalk as matrix factorization. We applied the objective perturbation approach

on the objective function of matrix factorization. Our evaluation shows that on both vertex

classification and link prediction tasks our DPNE achieves satisfactory performance.

In Chapter 6, we first developed FairGAN to generate fair data, which is free from

disparate treatment and disparate impact, while retaining high data utility. FairGAN consists

of one generator and two discriminators. We then developed FairGAN+ to (1) generate fair

data, which is free from disparate treatment and disparate impact w.r.t. the real protected

attribute, while retaining high data utility, and (2) release a fair classifier that satisfies

classification-based fairness, such as demographic parity, equality of odds and equality of

opportunity. FairGAN+ consists of one generator, one classifier and three discriminators.

The experimental results showed the effectiveness of FairGAN on fair data generation, the

effectiveness of FairGAN+ on both fair data generation and fair classification, and the better

trade-off of FairGAN+ between the utility and fairness when co-training a generative model

and a classifier.

In Chapter 7, we developed the causal fairness-aware generative adversarial networks

(CFGAN) for generating high quality fair data. We considered various causal-based fairness

criteria, including total effect, direct discrimination, indirect discrimination, and counterfac-
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tual fairness. CFGAN consists of two generators and two discriminators. The two generators

aim to simulate the original causal model and the interventional model. This is achieved by

arranging the neural network structure of the generators following the original causal graph

and the interventional graph. Then, two discriminators are adopted for achieving both the

high data utility and causal fairness. Experiments using the Adult dataset showed that CF-

GAN can achieve all types of fairness with relatively small utility loss.

In Chapter 8, we developed two differentially private and fair logistic regression mod-

els, PFLR and PFLR*. PFLR is to apply the functional mechanism to the objective function

with fairness constraint as a penalty term. Our enhanced model, PFLR*, takes advantage

of the connection between ways of achieving differential privacy and fairness and adds the

Laplace noise with non-zero mean. The experimental results on two datasets demonstrate

the effectiveness of two approaches and show the superiority of PFLR*. In this work, we

considered logistic regression as the classification model and the covariance between decision

boundary and the protected attribute as the fairness constraint.

In Chapter 9, we developed DPSGD-F to remove the potential disparate impact of

differential privacy on the protected group. DPSGD-F adjusts the contribution of samples in

a group depending on the group clipping bias such that differential privacy has no disparate

impact on group utility. Our experimental evaluation shows how group sample size and

group clipping bias affect the impact of differential privacy in DPSGD, and how adaptive

clipping for each group helps to mitigate the disparate impact caused by differential privacy in

DPSGD-F. Gradient clipping in the non-private context may improve the model robustness

against outliers. However, examples in the minority group are not outliers. They should not

be ignored by the (private) learning model.
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10.2 Future Work

In this section, based on the works we have done, we propose some potential works

on privacy preserving and fairness-aware machine learning.

In Chapter 4, we studied how to preserve differential privacy in the widely used classic

PC algorithm. The PC algorithm still has some limitations including (a) vulnerability to

errors in statistical independence test results, (b) no ranking or estimation of the confidence

in the causal predictions, and (c) erroneous conclusions due to hidden variables. In future

work, we will extend our study to other alternative causal modeling such as local causal

discovery [118, 119, 120] and the Fast Causal Inference [34].

In Chapter 5, we developed DPNE based on DeepWalk as matrix factorization. DPNE

can be easily employed in other network embedding methods if there exists an equivalent

matrix factorization of a certain matrix. For example, LINE is proven to be factorizing a

similar matrix to M [121]. We would derive differential privacy preserving LINE similarly.

One potential limitation of the matrix factorization based methods is that they are not

scalable to large networks. Graph factorization [105] uses a streaming algorithm for graph

partitioning to improve factorization based embedding methods. In future work, we will

extend our DPNE to deal with large networks.

In Chapter 6, we developed FairGAN and FairGAN+ to generate fair data and re-

lease a fair classifier that satisfies classification-based fairness, such as demographic parity,

equality of odds and equality of opportunity. In Chapter 7, we developed CFGAN to gen-

erate fair data that satisfies causation-based fairness in data, including total effect, direct

discrimination, indirect discrimination, and counterfactual fairness. In future, we plan to

achieve causation-based fairness in classification, so it can release a well-trained classifier
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which makes predictions with no causal bias against the protected group.

In Chapter 8, we developed PFLR and PFLR* to simultaneously achieve differential

privacy and decision boundary fairness in logistic regression. In future work, we plan to

extend our methods to other classification models and other fairness constraints. Another

research direction is to study allocation strategies of privacy budget, e.g., adding different

amount of noise to coefficients containing different attributes.

In Chapter 9, we developed DPSGD-F to remove the potential disparate impact of

differential privacy on the protected group. In future work, we can further improve our adap-

tive clipping method from group-wise adaptive clipping to element-wise (from user and/or

parameter perspectives) adaptive clipping, so the model can be fair even to the unseen

minority class.

When we consider both privacy and fairness issues in machine learning, there are

many new research challenges unexploited. In this dissertation, we studied the problems of

the within-model fairness in the differentially private models and the cross-model fairness in

terms of group accuracy when applying differential mechanisms to a non-private model.

In future work, we will continue along this general direction. First, there are malicious

adversaries who may use membership attacks to target the privacy of machine learning

models. It is unclear if unprivileged groups are more vulnerable to such attack. It is also

unclear if state-of-the-art defense methods have the same performance across all groups.

Second, the robustness of the private models and fair models is more complicated than the

robustness of the vanilla models. There are new challenges on how to improve the robustness

of a private and/or fair model. Third, federated learning is required when a large amount of

data is distributed among different parties. It is not trivial to extend the privacy preserving

and/or fairness-aware mechanisms to the distributed setting from the centralized setting.
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