3,032 research outputs found

    Towards a digital model of zebrafish embryogenesis. Integration of Cell Tracking and Gene Expression Quantification

    Get PDF
    We elaborate on a general framework composed of a set of computational tools to accurately quantificate cellular position and gene expression levels throughout early zebrafish embryogenesis captured over a time-lapse series of in vivo 3D images. Our modeling strategy involves nuclei detection, cell geometries extraction, automatic gene levels quantification and cell tracking to reconstruct cell trajectories and lineage tree which describe the animal development. Each cell in the embryo is then precisely described at each given time t by a vector composed of the cell 3D spatial coordinates (x; y; z) along with its gene expression level g. This comprehensive description of the embryo development is used to assess the general connection between genetic expression and cell movement. We also investigate genetic expression propagation between a cell and its progeny in the lineage tree. More to the point, this paper focuses on the evolution of the expression pattern of transcriptional factor goosecoid (gsc) through the gastrulation process between 6 and 9 hours post fertilization (hpf

    Advanced optical imaging in living embryos

    Get PDF
    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis

    In vivo 4-dimensional tracking of hematopoietic stem and progenitor cells in adult mouse calvarial bone marrow

    No full text
    Through a delicate balance between quiescence and proliferation, self renewal and production of differentiated progeny, hematopoietic stem cells (HSCs) maintain the turnover of all mature blood cell lineages. The coordination of the complex signals leading to specific HSC fates relies upon the interaction between HSCs and the intricate bone marrow microenvironment, which is still poorly understood[1-2]. We describe how by combining a newly developed specimen holder for stable animal positioning with multi-step confocal and two-photon in vivo imaging techniques, it is possible to obtain high-resolution 3D stacks containing HSPCs and their surrounding niches and to monitor them over time through multi-point time-lapse imaging. High definition imaging allows detecting ex vivo labeled hematopoietic stem and progenitor cells (HSPCs) residing within the bone marrow. Moreover, multi-point time-lapse 3D imaging, obtained with faster acquisition settings, provides accurate information about HSPC movement and the reciprocal interactions between HSPCs and stroma cells. Tracking of HSPCs in relation to GFP positive osteoblastic cells is shown as an exemplary application of this method. This technique can be utilized to track any appropriately labeled hematopoietic or stromal cell of interest within the mouse calvarium bone marrow space

    Improving utility of brain tumor confocal laser endomicroscopy: objective value assessment and diagnostic frame detection with convolutional neural networks

    Full text link
    Confocal laser endomicroscopy (CLE), although capable of obtaining images at cellular resolution during surgery of brain tumors in real time, creates as many non-diagnostic as diagnostic images. Non-useful images are often distorted due to relative motion between probe and brain or blood artifacts. Many images, however, simply lack diagnostic features immediately informative to the physician. Examining all the hundreds or thousands of images from a single case to discriminate diagnostic images from nondiagnostic ones can be tedious. Providing a real-time diagnostic value assessment of images (fast enough to be used during the surgical acquisition process and accurate enough for the pathologist to rely on) to automatically detect diagnostic frames would streamline the analysis of images and filter useful images for the pathologist/surgeon. We sought to automatically classify images as diagnostic or non-diagnostic. AlexNet, a deep-learning architecture, was used in a 4-fold cross validation manner. Our dataset includes 16,795 images (8572 nondiagnostic and 8223 diagnostic) from 74 CLE-aided brain tumor surgery patients. The ground truth for all the images is provided by the pathologist. Average model accuracy on test data was 91% overall (90.79 % accuracy, 90.94 % sensitivity and 90.87 % specificity). To evaluate the model reliability we also performed receiver operating characteristic (ROC) analysis yielding 0.958 average for the area under ROC curve (AUC). These results demonstrate that a deeply trained AlexNet network can achieve a model that reliably and quickly recognizes diagnostic CLE images.Comment: SPIE Medical Imaging: Computer-Aided Diagnosis 201

    Differential RhoA Dynamics in Migratory and Stationary Cells Measured by FRET and Automated Image Analysis

    Get PDF
    Genetically-encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to study the spatiotemporal regulation of molecular activity in live cells with high resolution. The efficient and accurate quantification of the large amount of imaging data from these single-cell FRET measurements demands robust and automated data analysis. However, the nonlinear movement of live cells presents tremendous challenge for this task. Based on image registration of the single-cell movement, we have developed automated image analysis methods to track and quantify the FRET signals within user-defined subcellular regions. In addition, the subcellular pixels were classified according to their associated FRET signals and the dynamics of the clusters analyzed. The results revealed that the EGF-induced reduction of RhoA activity in migratory HeLa cells is significantly less than that in stationary cells. Furthermore, the RhoA activity is polarized in the migratory cells, with the gradient of polarity oriented toward the opposite direction of cell migration. In contrast, there is a lack of consistent preference in RhoA polarity among stationary cells. Therefore, our image analysis methods can provide powerful tools for high-throughput and systematic investigation of the spatiotemporal molecular activities in regulating functions of live cells with their shapes and positions continuously changing in time

    In vivo microCT-based time-lapse morphometry reveals anatomical site-specific differences in bone (re)modeling serving as baseline parameters to detect early pathological events

    Get PDF
    The bone structure is very dynamic and continuously adapts its geometry to external stimuli by modeling and remodeling the mineralized tissue. In vivo microCT-based time-lapse morphometry is a powerful tool to study the temporal and spatial dynamics of bone (re)modeling. Here an advancement in the methodology to detect and quantify site-specific differences in bone (re)modeling of 12-week-old BALB/c nude mice is presented. We describe our method of quantifying new bone surface interface readouts and how these are influenced by bone curvature. This method is then used to compare bone surface (re)modeling in mice across different anatomical regions to demonstrate variations in the rate of change and spatial gradients thereof. Significant differences in bone (re)modeling baseline parameters between the metaphyseal and epiphyseal are shown, as well as cortical and trabecular bone of the distal femur and proximal tibia. These results are validated using conventional static in vivo microCT analysis. Finally, the insights from these new baseline values of physiological bone (re)modeling were used to evaluate pathological bone (re)modeling in a pilot breast cancer bone metastasis model. The method shows the potential to be suitable to detect early pathological events and track their spatio-temporal development in both cortical and trabecular bone. This advancement in (re)modeling surface analysis and defined baseline parameters according to distinct anatomical regions will be valuable to others investigating various disease models with site-distinct local alterations in bone (re)modeling.ER
    corecore