3,172 research outputs found

    Thermally-aware composite run-time CPU power models

    No full text
    Accurate and stable CPU power modelling is fundamental in modern system-on-chips (SoCs) for two main reasons: 1) they enable significant online energy savings by providing a run-time manager with reliable power consumption data for controlling CPU energy-saving techniques; 2) they can be used as accurate and trusted reference models for system design and exploration. We begin by showing the limitations in typical performance monitoring counter (PMC) based power modelling approaches and illustrate how an improved model formulation results in a more stable model that efficiently captures relationships between the input variables and the power consumption. Using this as a solid foundation, we present a methodology for adding thermal-awareness and analytically decomposing the power into its constituting parts. We develop and validate our methodology using data recorded from a quad-core ARM Cortex-A15 mobile CPU and we achieve an average prediction error of 3.7% across 39 diverse workloads, 8 Dynamic Voltage-Frequency Scaling (DVFS) levels and with a CPU temperature ranging from 31 degrees C to 91 degrees C. Moreover, we measure the effect of switching cores offline and decompose the existing power model to estimate the static power of each CPU and L2 cache, the dynamic power due to constant background (BG) switching, and the dynamic power caused by the activity of each CPU individually. Finally, we provide our model equations and software tools for implementing in a run-time manager or for using with an architectural simulator, such as gem5

    Modeling the Temperature Bias of Power Consumption for Nanometer-Scale CPUs in Application Processors

    Full text link
    We introduce and experimentally validate a new macro-level model of the CPU temperature/power relationship within nanometer-scale application processors or system-on-chips. By adopting a holistic view, this model is able to take into account many of the physical effects that occur within such systems. Together with two algorithms described in the paper, our results can be used, for instance by engineers designing power or thermal management units, to cancel the temperature-induced bias on power measurements. This will help them gather temperature-neutral power data while running multiple instance of their benchmarks. Also power requirements and system failure rates can be decreased by controlling the CPU's thermal behavior. Even though it is usually assumed that the temperature/power relationship is exponentially related, there is however a lack of publicly available physical temperature/power measurements to back up this assumption, something our paper corrects. Via measurements on two pertinent platforms sporting nanometer-scale application processors, we show that the power/temperature relationship is indeed very likely exponential over a 20{\deg}C to 85{\deg}C temperature range. Our data suggest that, for application processors operating between 20{\deg}C and 50{\deg}C, a quadratic model is still accurate and a linear approximation is acceptable.Comment: Submitted to SAMOS 2014; International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV

    Energy-Aware System-Level Design of Cyber-Physical Systems

    Get PDF
    Cyber-Physical Systems (CPSs) are heterogeneous systems in which one or several computational cores interact with the physical environment. This interaction is typically performed through electromechanical elements such as sensors and actuators. Many CPSs operate as part of a network and some of them present a constrained energy budget (for example, they are battery powered). Examples of energy constrained CPSs could be a mobile robot, the nodes that compose a Body Area Network or a pacemaker. The heterogeneity present in the composition of CPSs together with the constrained energy availability makes these systems challenging to design. A way to tackle both complexity and costs is the application of abstract modelling and simulation. This thesis proposed the application of modelling at the system level, taking energy consumption in the different kinds of subsystems into consideration. By adopting this cross disciplinary approach to energy consumption it is possible to decrease it effectively. The results of this thesis are a number of modelling guidelines and tool improvements to support this kind of holistic analysis, covering energy consumption in electromechanical, computation and communication subsystems. From a methodological point of view these have been framed within a V-lifecycle. Finally, this approach has been demonstrated on two case studies from the medical domain enabling the exploration of alternative systems architectures and producing energy consumption estimates to conduct trade-off analysis

    Performance Assessment of Deep Learning Frameworks through Metrics of CPU Hardware Exploitation on an Embedded Platform

    Get PDF
    In this paper, we analyze heterogeneous performance exhibited by some popular deep learning software frameworks for visual inference on a resource-constrained hardware platform. Benchmarking of Caffe, OpenCV, TensorFlow, and Caffe2 is performed on the same set of convolutional neural networks in terms of instantaneous throughput, power consumption, memory footprint, and CPU utilization. To understand the resulting dissimilar behavior, we thoroughly examine how the resources in the processor are differently exploited by these frameworks. We demonstrate that a strong correlation exists between hardware events occurring in the processor and inference performance. The proposed hardware-aware analysis aims to find limitations and bottlenecks emerging from the joint interaction of frameworks and networks on a particular CPU-based platform. This provides insight into introducing suitable modifications in both types of components to enhance their global performance. It also facilitates the selection of frameworks and networks among a large diversity of these components available these days for visual understanding
    corecore