60,187 research outputs found

    Can coercive formulations lead to fast and accurate solution of the Helmholtz equation?

    Full text link
    A new, coercive formulation of the Helmholtz equation was introduced in [Moiola, Spence, SIAM Rev. 2014]. In this paper we investigate hh-version Galerkin discretisations of this formulation, and the iterative solution of the resulting linear systems. We find that the coercive formulation behaves similarly to the standard formulation in terms of the pollution effect (i.e. to maintain accuracy as kk\to\infty, hh must decrease with kk at the same rate as for the standard formulation). We prove kk-explicit bounds on the number of GMRES iterations required to solve the linear system of the new formulation when it is preconditioned with a prescribed symmetric positive-definite matrix. Even though the number of iterations grows with kk, these are the first such rigorous bounds on the number of GMRES iterations for a preconditioned formulation of the Helmholtz equation, where the preconditioner is a symmetric positive-definite matrix.Comment: 27 pages, 7 figure

    A Simple Iterative Algorithm for Parsimonious Binary Kernel Fisher Discrimination

    Get PDF
    By applying recent results in optimization theory variously known as optimization transfer or majorize/minimize algorithms, an algorithm for binary, kernel, Fisher discriminant analysis is introduced that makes use of a non-smooth penalty on the coefficients to provide a parsimonious solution. The problem is converted into a smooth optimization that can be solved iteratively with no greater overhead than iteratively re-weighted least-squares. The result is simple, easily programmed and is shown to perform, in terms of both accuracy and parsimony, as well as or better than a number of leading machine learning algorithms on two well-studied and substantial benchmarks

    A fast semi-direct least squares algorithm for hierarchically block separable matrices

    Full text link
    We present a fast algorithm for linear least squares problems governed by hierarchically block separable (HBS) matrices. Such matrices are generally dense but data-sparse and can describe many important operators including those derived from asymptotically smooth radial kernels that are not too oscillatory. The algorithm is based on a recursive skeletonization procedure that exposes this sparsity and solves the dense least squares problem as a larger, equality-constrained, sparse one. It relies on a sparse QR factorization coupled with iterative weighted least squares methods. In essence, our scheme consists of a direct component, comprised of matrix compression and factorization, followed by an iterative component to enforce certain equality constraints. At most two iterations are typically required for problems that are not too ill-conditioned. For an M×NM \times N HBS matrix with MNM \geq N having bounded off-diagonal block rank, the algorithm has optimal O(M+N)\mathcal{O} (M + N) complexity. If the rank increases with the spatial dimension as is common for operators that are singular at the origin, then this becomes O(M+N)\mathcal{O} (M + N) in 1D, O(M+N3/2)\mathcal{O} (M + N^{3/2}) in 2D, and O(M+N2)\mathcal{O} (M + N^{2}) in 3D. We illustrate the performance of the method on both over- and underdetermined systems in a variety of settings, with an emphasis on radial basis function approximation and efficient updating and downdating.Comment: 24 pages, 8 figures, 6 tables; to appear in SIAM J. Matrix Anal. App

    Common pulse retrieval algorithm: a fast and universal method to retrieve ultrashort pulses

    Full text link
    We present a common pulse retrieval algorithm (COPRA) that can be used for a broad category of ultrashort laser pulse measurement schemes including frequency-resolved optical gating (FROG), interferometric FROG, dispersion scan, time domain ptychography, and pulse shaper assisted techniques such as multiphoton intrapulse interference phase scan (MIIPS). We demonstrate its properties in comprehensive numerical tests and show that it is fast, reliable and accurate in the presence of Gaussian noise. For FROG it outperforms retrieval algorithms based on generalized projections and ptychography. Furthermore, we discuss the pulse retrieval problem as a nonlinear least-squares problem and demonstrate the importance of obtaining a least-squares solution for noisy data. These results improve and extend the possibilities of numerical pulse retrieval. COPRA is faster and provides more accurate results in comparison to existing retrieval algorithms. Furthermore, it enables full pulse retrieval from measurements for which no retrieval algorithm was known before, e.g., MIIPS measurements
    corecore