4 research outputs found

    Patterns in the Chaos - a Study of Performance Variation and Predictability in Public IaaS Clouds

    Full text link
    Benchmarking the performance of public cloud providers is a common research topic. Previous research has already extensively evaluated the performance of different cloud platforms for different use cases, and under different constraints and experiment setups. In this paper, we present a principled, large-scale literature review to collect and codify existing research regarding the predictability of performance in public Infrastructure-as-a-Service (IaaS) clouds. We formulate 15 hypotheses relating to the nature of performance variations in IaaS systems, to the factors of influence of performance variations, and how to compare different instance types. In a second step, we conduct extensive real-life experimentation on Amazon EC2 and Google Compute Engine to empirically validate those hypotheses. At the time of our research, performance in EC2 was substantially less predictable than in GCE. Further, we show that hardware heterogeneity is in practice less prevalent than anticipated by earlier research, while multi-tenancy has a dramatic impact on performance and predictability

    Intelligent Management of Virtualised Computer Based Workloads and Systems

    Get PDF
    Managing the complexity within virtualised IT infrastructure platforms is a common problem for many organisations today. Computer systems are often highly consolidated into a relatively small physical footprint compared with previous decades prior to late 2000s, so much thought, planning and control is necessary to effectively operate such systems within the enterprise computing space. With the development of private, hybrid and public cloud utility computing this has become even more relevant; this work examines how such cloud systems are using virtualisation technology and embedded software to leverage advantages, and it uses a fresh approach of developing and creating an Intelligent decision engine (expert system). Its aim is to help reduce the complexity of managing virtualised computer-based platforms, through tight integration, high-levels of automation to minimise human inputs, errors, and enforce standards and consistency, in order to achieve better management and control. The thesis investigates whether an expert system known as the Intelligent Decision Engine (IDE) could aid the management of virtualised computer-based platforms. Through conducting a series of mixed quantitative and qualitative experiments in the areas of research, the initial findings and evaluation are presented in detail, using repeatable and observable processes and provide detailed analysis on the recorded outputs. The results of the investigation establish the advantages of using the IDE (expert system) to achieve the goal of reducing the complexity of managing virtualised computer-based platforms. In each detailed area examined, it is demonstrated how using a global management approach in combination with VM provisioning, migration, failover, and system resource controls can create a powerful autonomous system
    corecore