3,121 research outputs found

    Accurate Non-Iterative O(n) Solution to the PnP Problem

    Get PDF
    We propose a non-iterative solution to the PnP problem---the estimation of the pose of a calibrated camera from n 3D-to-2D point correspondences---whose computational complexity grows linearly with n. This is in contrast to state-of-the-art method that are O(n^5) or even O(n^8), without being more accurate. Our method is applicable for all n greater than 4 and handles properly both planar and non-planar configurations. Our central idea is to express the n 3--D points as a weighted sum of four virtual control points. The problem then reduces to estimating the coordinates of these control points in the camera referential, which can be done in O(n)O(n) time by expressing these coordinates as weighted sum of the eigenvectors of a 12×1212\times12 matrix and solving a small constant number of quadratic equations to pick the right weights. The advantages of our method are demonstrated by thorough testing on both synthetic and real-data

    EP n P: An Accurate O ( n ) Solution to the P n P Problem

    Get PDF
    We propose a non-iterative solution to the PnP problem—the estimation of the pose of a calibrated camera from n 3D-to-2D point correspondences—whose computational complexity grows linearly with n. This is in contrast to state-of-the-art methods that are O(n 5) or even O(n 8), without being more accurate. Our method is applicable for all n≥4 and handles properly both planar and non-planar configurations. Our central idea is to express the n 3D points as a weighted sum of four virtual control points. The problem then reduces to estimating the coordinates of these control points in the camera referential, which can be done in O(n) time by expressing these coordinates as weighted sum of the eigenvectors of a 12×12 matrix and solving a small constant number of quadratic equations to pick the right weights. Furthermore, if maximal precision is required, the output of the closed-form solution can be used to initialize a Gauss-Newton scheme, which improves accuracy with negligible amount of additional time. The advantages of our method are demonstrated by thorough testing on both synthetic and real-dat

    MLPnP - A Real-Time Maximum Likelihood Solution to the Perspective-n-Point Problem

    Get PDF
    In this paper, a statistically optimal solution to the Perspective-n-Point (PnP) problem is presented. Many solutions to the PnP problem are geometrically optimal, but do not consider the uncertainties of the observations. In addition, it would be desirable to have an internal estimation of the accuracy of the estimated rotation and translation parameters of the camera pose. Thus, we propose a novel maximum likelihood solution to the PnP problem, that incorporates image observation uncertainties and remains real-time capable at the same time. Further, the presented method is general, as is works with 3D direction vectors instead of 2D image points and is thus able to cope with arbitrary central camera models. This is achieved by projecting (and thus reducing) the covariance matrices of the observations to the corresponding vector tangent space.Comment: Submitted to the ISPRS congress (2016) in Prague. Oral Presentation. Published in ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., III-3, 131-13

    Planar PØP: feature-less pose estimation with applications in UAV localization

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.We present a featureless pose estimation method that, in contrast to current Perspective-n-Point (PnP) approaches, it does not require n point correspondences to obtain the camera pose, allowing for pose estimation from natural shapes that do not necessarily have distinguished features like corners or intersecting edges. Instead of using n correspondences (e.g. extracted with a feature detector) we will use the raw polygonal representation of the observed shape and directly estimate the pose in the pose-space of the camera. This method compared with a general PnP method, does not require n point correspondences neither a priori knowledge of the object model (except the scale), which is registered with a picture taken from a known robot pose. Moreover, we achieve higher precision because all the information of the shape contour is used to minimize the area between the projected and the observed shape contours. To emphasize the non-use of n point correspondences between the projected template and observed contour shape, we call the method Planar PØP. The method is shown both in simulation and in a real application consisting on a UAV localization where comparisons with a precise ground-truth are provided.Peer ReviewedPostprint (author's final draft
    • …
    corecore