3 research outputs found

    Stereo Matching Using a Modified Efficient Belief Propagation in a Level Set Framework

    Get PDF
    Stereo matching determines correspondence between pixels in two or more images of the same scene taken from different angles; this can be handled either locally or globally. The two most common global approaches are belief propagation (BP) and graph cuts. Efficient belief propagation (EBP), which is the most widely used BP approach, uses a multi-scale message passing strategy, an O(k) smoothness cost algorithm, and a bipartite message passing strategy to speed up the convergence of the standard BP approach. As in standard belief propagation, every pixel sends messages to and receives messages from its four neighboring pixels in EBP. Each outgoing message is the sum of the data cost, incoming messages from all the neighbors except the intended receiver, and the smoothness cost. Upon convergence, the location of the minimum of the final belief vector is defined as the current pixel’s disparity. The present effort makes three main contributions: (a) it incorporates level set concepts, (b) it develops a modified data cost to encourage matching of intervals, (c) it adjusts the location of the minimum of outgoing messages for select pixels that is consistent with the level set method. When comparing the results of the current work with that of standard EBP, the disparity results are very similar, as they should be

    Wide-baseline object interpolation using shape prior regularization of epipolar plane images

    Get PDF
    This paper considers the synthesis of intermediate views of an object captured by two calibrated and widely spaced cameras. Based only on those two very different views, our paper proposes to reconstruct the object Epipolar Plane Image Volume [1] (EPIV), which describes the object transformation when continuously moving the viewpoint of the synthetic view in-between the two reference cameras. This problem is clearly ill-posed since the occlusions and the foreshortening effect make the reference views significantly different when the cameras are far apart. Our main contribution consists in disambiguating this ill-posed problem by constraining the interpolated views to be consistent with an object shape prior. This prior is learnt based on images captured by the two reference views, and consists in a nonlinear shape manifold representing the plausible silhouettes of the object described by Elliptic Fourier Descriptors. Experiments on both synthetic and natural images show that the proposed method preserves the topological structure of objects during the intermediate view synthesis, while dealing effectively with the self-occluded regions and with the severe foreshortening effect associated to wide-baseline camera configurations

    Accurate dense stereo by constraining local consistency on superpixels

    No full text
    Segmentation is a low-level vision cue often deployed by stereo algorithms to assume that disparity within superpixels varies smoothly. In this paper, we show that constraining, on a superpixel basis, the cues provided by a recently proposed technique, which explicitly models local consistency among neighboring points, yields accurate and dense disparity fields. Our proposal, starting from the initial disparity hypotheses of a fast dense stereo algorithm based on scanline optimization, demonstrates its effectiveness by enabling us to obtain results comparable to top-ranked algorithms based on iterative disparity optimization methods
    corecore