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ABSTRACT

STEREO MATCHING

USING A MODIFIED EFFICIENT BELIEF PROPAGATION

IN A LEVEL SET FRAMEWORK

by Stephen Goyer Rogers

December 2010

Stereo matching determines correspondence between pixels in two or more images of

the same scene taken from different angles; this can be handled either locally or globally.

The two most common global approaches are belief propagation (BP) and graph cuts.

Efficient belief propagation (EBP), which is the most widely used BP approach, uses

a multi-scale message passing strategy, an O(k) smoothness cost algorithm, and a bipartite

message passing strategy to speed up the convergence of the standard BP approach. As

in standard belief propagation, every pixel sends messages to and receives messages from

its four neighboring pixels in EBP. Each outgoing message is the sum of the data cost,

incoming messages from all the neighbors except the intended receiver, and the smoothness

cost. Upon convergence, the location of the minimum of the final belief vector is defined

as the current pixel’s disparity.

The present effort makes three main contributions: (a) it incorporates level set concepts,

(b) it develops a modified data cost to encourage matching of intervals, (c) it adjusts the

location of the minimum of outgoing messages for select pixels that is consistent with the

level set method.

When comparing the results of the current work with that of standard EBP [11], the

disparity results are very similar, as they should be.
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1
Chapter 1

INTRODUCTION

1.1 What is Stereo Matching?

Stereo matching is the process of determining correspondence between pixels within two or

more images of a single scene taken from different angles. However, using image rectifica-

tion, whereby images are typically horizontally aligned, the general stereo vision problem

can be simplified to finding only the horizontal correspondence, especially for narrow base-

line stereo. For non-stationary scenes, multiple views are typically used to produce optimal

stereo matching results. However, for stationary scenes, such as those used in this work,

multi-view does not offer a significant advantage over two-view. In addition, the two-view

approach is computationally less expensive and requires less memory.

In two-view stereo, the two images are typically called the left and the right images.

One can either find the correspondence of the left image pixels, called left correspondence,

in the right image or the correspondence of the right image pixels, called the right cor-

respondence, in the left image. When finding the left correspondence, the left image is

called the reference image and the right image is called the search image and vice versa.

The amount of shift between corresponding pixels is called disparity, usually expressed in

terms of the number of pixels between corresponding points. Thus, one can compute either

the right disparity field (with the right image as the reference) or the left disparity field

(with the left image as the reference). While the disparity value can be treated as a real

number, assuming it to be an integer simplifies calculations and storage.

1.2 Review of Previous Work

Numerous approaches have been developed to handle stereo vision; both locally and glob-

ally based on the search area.
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1.2.1 Local-Based Approaches

In the case of local approaches, the search area for finding a match is confined to a fixed-

size window within the search image; for additional discussion, see Murali [29]. While the

local-based approaches may be faster, the results are often less impressive than those of the

global approaches due to the presence of "streaks" especially in older local methods. Most

of the recent local approaches have sought to combine the accuracy found in the global

approaches with the efficiency of the local approaches.

In Yoon and Kweon [51], the cost function is calculated using a weighted window-based

approach, where each pixel in the window is assigned a specific weight using both the color

and proximity differences from the center of the window. First, weights are computed

for both the left and right windows. Then the window score is computed according to

WS(p, p′) =
∑

q∈Npq′∈Np′

wL(p′,q′)∗wR(p,q)∗ |IR
q − IL

q′|

∑
q∈Npq′∈Np′

wL(p′,q′)∗wR(p,q)
, where p and q represent the

current pixel and one of its neighboring pixels in the reference image window, while p′ and

q′ represent the corresponding points in the search image for p and q. The advantage of

Yoon and Kweon’s approach is that it produces very good disparity results in spite of being

a local method. On the other hand, the major disadvantage is that computationally it takes

much longer to compute the disparity field than the global methods. Thus, this method is

of little practical use in applications that demand real-time performance. Nister et al. [49]

adopted the approach of Yoon and Kweon in their global approach to calculate an initial

disparity field. However, they replaced the absolute difference with the Birchfield-Tomasi

dissimilarity measure [2]. It has been shown in the literature that BT is more robust to image

sampling errors and produces better results than absolute difference. Additionally, [2] also

performs its operations with only a 10 percent increase in time over absolute difference.

Another idea that is widely used in stereo vision literature is the truncated absolute

difference(TAD), min(|IR
x,y− IL

x−d,y|,τ), where τ is a user specified parameter. Recently,

for example, Tomabari, Mattoccia, and Di Stefano [42] and Tombari et al. [43] have used
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TAD along with an image segmentation to speedup the weight calculation in their local

algorithm.

In Mattoccia, Giardino, and Gambini [26], the goal is to combine the accuracy found

in those approaches using "adaptive weights" with the efficiency of more traditional "cor-

relative" approaches. To this end, this approach divided each window into blocks, utilizing

Yoon and Kweon’s method [51] to calculate spatial filtering within each block and cal-

culating a color average for the range filtering. The block based weights, along with the

pixel-based matching cost, are combined to yield an overall score with fewer individual

spatial and range filtering values. While improving robustness to noise, this approach’s

pixel-wise cost computation and block averaging shows a speedup through the use of in-

tegral image [8, 45] and box filtering schemes. According to [26], the results are ranked

highly amongst the top performers for both segmentation and adaptive weights, while re-

quiring less computation.

Mattoccia [21] utilizes "mutual relationships between neighboring pixels," while "ex-

plicitly modeling continuity constraints." The accuracy of this approach is very high espe-

cially in areas of depth discontinuity and low texture. There are two versions of this ap-

proach; combining [21] with fast bilateral stereo and combining [21] with a fixed window.

Both approaches performed extremely well, the first outperforming all others in its area,

and the other approach ranking second. [21] also states that the second version provides a

"trade-off between accuracy and efficiency."

Unlike traditional scanline-based local approaches, Hirschmuller [14] overcomes the

issue of streaking through the incorporation of global information in its energy function

calculations to determine correct correspondence. However, while it provides accuracy

at depth boundaries as well as "uniform regions," this approach is unable to enforce the

ordering constraint between neighboring pixels. Hirschmuller [14] also states that its high

memory requirement is another drawback.

Mattoccia, Tombari, and Di Stefano [27] "combine an effective cost aggregation strat-
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egy with a scanline optimization based disparity computation framework." In this method,

the cost is calculated using a segmentation support. The disparity calculation depends on

the scanline optimization process, collecting information from four directions (top, bottom,

left, and right). Despite its slow runtime, due to the cost aggregation, this method produces

good results.

In Mattoccia [24], the author utilizes Mattoccia [21] to improve the accuracy of the

initial disparity for traditional scanline optimization/dynamic programming algorithm. In

this approach, [21] is used to create two independent disparity images. A cross-checking

operation is performed and those "uncertain" pixels are detected and an interpolated dis-

parity assignment is performed. This approach was evaluated using initial disparity from

[14], showing significant improvement.

The method proposed in Mattoccia [23] is able to significantly reduce the execution

time over [24], while achieving equivalent results. This improvement is due, in part, to this

method’s relaxed [21] and utilization of coarse-grained thread level parallelism.

According to Mattoccia [22, 25], the LC operation [21] can be further improved by

"constraining its behavior on superpixels" using a mean-shift operation [7]. In this two

phase strategy, the reference image is first over segmented, followed by a cross checking

detection for "uncertain pixels," and "regularization" of disparities within the superpixels.

Second, the segmentation constraints are relaxed to allow the disparities to propagate. As

in the two previous examples, [22] uses the disparity image from [14] as a starting point.

1.2.2 Global-Based Approaches

Despite the success of many of the local-based approaches listed previously, global ap-

proaches, like graph cuts [6, 16, 18, 47, 4] and belief propagation [20, 28, 31, 30, 19, 5, 40],

which utilize the entire image to facilitate information propagation in order to make an op-

timal match decision, continue to produce the top ranked results according to Middlebury

[36]. Tappen and Freeman [41] conducted comparative tests using graph cuts and belief
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propagation and concluded that overall they appeared evenly matched, but, while graph

cuts produced smoother disparity images, belief propagation maintained the overall struc-

ture in a more acceptable manner. Further, both Sun et al. [39] and Nister et al. [49] state

that belief propagation is a better choice for implementing on parallel hardware than graph

cuts, while Nister et al. [49] also claims that belief propagation makes it easier to handle

occlusion detection. For these reasons, especially the occlusion handling, this work uses

belief propagation.

a. b.

Figure 1.1: Message Grid; a. Sample Grid b. Example of incoming message use for
outgoing message calculation

In standard belief propagation, it is assumed that each pixel in the reference image has

a matching pixel in the search image, which can be found within a user-defined disparity

range, say k. These disparities are assumed to be integers. Belief propagation is an iterative

approach. During each iteration, each pixel sends messages to and receives messages from

its four neighboring pixels (U, D, L, and R). When calculating the newest outgoing message

for a particular neighbor, the current pixel uses its incoming messages from three of its

four neighboring pixels, (i.e. all neighbors expect the one to which the current message

is intended). For instance, if the current outgoing message from pixel X, shown in Figure
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1.1b, is for the neighbor L, then only the incoming messages from D, U, and R will be used.

Initially, all incoming messages are set to zero. In addition to the incoming messages, the

current outgoing message also includes the data cost (typically calculated using the absolute

difference between reference pixel and each pixel in its disparity range in the search image),

and the smoothness cost. The smoothness cost is calculated as a penalty for discontinuous

disparities between the current pixel and the intended recipient of the message. Otherwise,

the smoothness cost is zero.

Once the iterations are complete, the final belief vector for each pixel is calculated by

summing the incoming messages from each of the four neighboring pixels and the current

pixel’s data cost for each disparity in the range. The index of the minimum value in the

belief vector is assigned as the final disparity at that reference pixel. In the standard belief

propagation, a very large number of iterations are required to ensure convergence. Hence,

the standard belief propagation is "too slow for practical use" [11].

Felzenszwalb and Huttenlocher [11] introduced an Efficient Belief Propagation ap-

proach using the concept of multiscale belief propagation, where a coarse-to-fine strategy

is used. This process starts at the coarsest level, and solves a separate belief propagation

problem at each level. Instead of coarsening the images themselves, as is done tradition-

ally, Felzenszwalb and Huttenlocher coarsen only the data cost. This allows for fractional

disparities at the coarser levels (with respect to the coarse pixel size). Once the propagation

process is completed for the current level, its final outgoing messages are used to initialize

the initial incoming messages for the next level. The initial incoming messages are set to

zero only in the coarsest level. This initialization of the finer levels is what accelerates

the overall convergence of the method. Felzenszwalb and Huttenlocher [11] also proposed

an approach that reduces the smoothness cost computations from a O(k2) complexity to

O(k). In addition, they introduced the concept of bipartite message updating, which up-

dates only half the total number of pixels in the image during the current iteration. They

have shown that their approach is much faster, while providing the same quality of results
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as the standard implementations.

Other approaches have been recently developed utilizing the multiscale or hierarchical

belief propagation approach to speedup convergence further. In Sarkis and Diepold [32],

an additional speedup is achieved by reducing the number of pixels participating in belief

propagation process, where the reference image is setup as a "sparse" network of "non-

uniformly sampled" pixels using a "skewness" metric, with message updating restricted to

the nodes in this network. Once the process is complete, the results within each node are

used to interpolate the disparity values at the remaining pixels. Klaus et al. [17] sought

to solve the problem of stereo matching by incorporating image segmentation and a "self-

adapting dissimilarity measure" in their belief propagation. This dissimilarity measure was

based on both the SAD and forward gradient-based measure for the surrounding neighbor-

hood of the current pixel.

Xu and Jia [48] approached the problem of stereo matching based on the "confidence"

of a given pixel being occluded. These confidence values are essential to the calculation

of the data cost. The confidence calculation falls into one of three cases: (1) definitely

occluded, (2) not occluded, or (3) possibly occluded. As these values must be between 0

and 1, the third case is often a fraction. The matching pixel falls within the first case if

the "interframe consistency" between the reference and search image is violated, resulting

in a confidence of 1. The third case is applied if the final belief of the current pixel x,

bx(d∗), exceeds a user-defined threshold [48]. In case (3), the function, T
(

b(d∗)−bmin
bo−bmin

)
,

returns a value between 0 and 1 based on the parameter’s value; bo is the average over all

minimum beliefs found in case (1), and bmin is the top user-defined percent of the minimum

beliefs from all pixels. If neither of the previous cases is found to be true, case (2) sets the

confidence to 0.

Trinh [44] incorporates hierarchical belief propagation and image segmentation, with

the reference image being divided into segments or "superpixels." In order to improve effi-

ciency, the messages are passed between neighboring segments, while maintaining smooth-
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ness within the segment itself. However, unlike the standard multi-level version [11],

Trinh’s approach [44] had difficulties transferring message information between levels.

Upon reaching a new level, the previous level’s segments are further segmented, with each

"child" segment initialized with a bias towards the final disparity of its parent segment. Ad-

ditionally, the disparities of these "child" segments are often less than those of the parent,

as they are estimated within a given range around the parent’s value. Given this estimation,

the results of the finer levels are less affected by errors in the coarse levels.

Nister et al. [49] updated the data term based on whether the reference pixel was oc-

cluded. The approach had three main step: (1) an initial stereo match, (2) classification of

the pixels, and (3) an iterative refinement step. In step (1), a "correlation volume" based

on a "color-weighted correlation" is chosen, as it is "less sensitive to occlusion boundaries"

[49]. This step uses the data term calculated from the color-weight correlation in hierarchi-

cal belief propagation similar to [11]. This initial stereo is run for both images to facilitate

a consistency check in the next step. In step (2), each pixel is labeled as occluded, stable or

unstable, based on a set of tests. If the consistency check fails, the disparity value is clas-

sified as occluded. For those unoccluded pixels, the "correlation confidence" is measured

against a user-defined threshold; if it exceeds the threshold, the pixel is considered stable.

The goal for step (3) is to propagate information from stable pixels to all remaining pixels

in the image. First, this step uses both image segmentation, implemented using mean shift

[7], and plane fitting, implemented using RANSAC, to smooth the disparities at the stable

pixels. The data terms are modified differently, with greater penalties for occluded and

unstable pixels, as they need more "regularization" [49]. This step is intended to ensure

that all occluded and unstable pixels are on the same plane as the stable pixels assigned to

a given segment. The segment information, pixel classification, and correlation volume aid

in calculating the new data term, which is used, in conjunction with the original smoothness

term, in another hierarchical belief propagation.

In spite of the improvements made by approaches like [11] and the others mentioned
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previously, few have achieved a real-time execution. However, Nister et al. [49, 50] devel-

oped a "fast converging" real-time belief propagation, which works well even with video.

This approach achieved this impressive speedup by eliminating "redundancies" found in

approaches like [11]. According to [49, 50], the main issue is ignoring previously con-

verged pixels when updating messages or smoothness. If a pixel’s incoming messages are

found to be unchanged from a previous iteration, the operations for this pixel will be ig-

nored in the future. The only exception to this rule is if a neighboring pixel’s outgoing is

updated at a later time.

Figure 1.2: Comparison of large intensity differences between EBP images with different
data cost methods: Absolute difference (left) versus Birchfield-Tomasi (right). Red pixels:
bad matches and green pixels: good matches.
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Figure 1.3: Comparison of large intensity differences between the modified EBP im-
ages with different data cost methods: Absolute difference (left) versus Birchfield-Tomasi
(right). Red pixels: bad matches and green pixels: good matches.

While the true disparity values in the Middlebury dataset [36] are real numbers, most

belief propagation approaches compute only integer disparity values. The disparity re-

sults using the code from Felzenszwalb and Huttenlocher [11] are shown in Figure 1.2.

As shown in Figures 1.2 and 1.3, the green and red pixels, which represent good and bad

matches, respectively, when compared with the ground truth, are where the intensity differ-

ence between the reference pixel and its corresponding match pixel in the search image is

greater than a user-defined threshold; in this case, 20. In both figures, the intensity differ-

ence coloring is mostly found to be consistent along the occlusion boundaries within each
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other images, as one would expect. In a few cases, there are other areas where the interior

of an object also gets classified in the manner. The Efficient Belief Propagation results

using both absolute difference data cost and Birchfield-Tomasi’s pixel dissimilarity appear

similar in their arrangement of large intensity difference matches. As one might expect, the

modified Efficient Belief Propagation produces significantly fewer large intensity differ-

ence matches, due to its fractional correspondence. In this case, though both data cost cal-

culations produce fewer large difference points, the modified EBP results using Birchfield-

Tomasi are more similar to their standard Efficient Belief Propagation counterparts due to

the symmetric nature of the algorithm. For instance, when examining correspondence from

right to left, the best interval match maybe found in the left to right direction instead. For

those pixels found in the smoothed interior of the object, further examination is necessary

as these could be incorrect matches. Despite the success [11, 39, 32, 17, 49, 50, 48, 44],

one has to ask "Does a smooth disparity image, such as Figure 1.2, reflect optimal matching

results?" In this case, the term "optimal" may be defined as those results with a low error

percentage when compared with the ground truth image.

1.3 Level Set Method

In order to deal with such issues as the large intensity correspondences discussed in the

previous section, concepts from the Level Set method (see Sethian [37]), discussed in the

section 2.1, are incorporated into belief propagation stereo matching in the present work.

The objective of the Level Set method is to estimate the motion of a "front" within a given

space [37], where the motion is governed according to some specified speed function. In

order to estimate this motion, the challenge of modeling the speed function must be handled

independently [37]. According to Sethian [37], the speed function (F) is defined as F=

F(L,G,I), where L is the local properties, G is the global properties of the front, and I is

the independent properties. The local properties are those that include the local geometric

information, like curvature and normal direction. While the global properties depend on
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the shape and position of the given front, the independent properties are not dependent on

the shape of the front, instead deal with the underlying fluid velocity that moves the front.

The value of the speed function is instrumental in determining the motion of the front.

For instance, if the area has a positive uniform speed (F=1), the motion of the front will

always be uniformly outward. The level set method is also setup to utilize an adaptive

speed function, which allows the front to move both forward and backward.

During the motion of a given front, its curvature will often be smooth. However, these

smooth curves can quickly form "non-differentiable" corners, as shown in Figures 1.4

and 1.5, which necessitates a "weak solution." One such solution is based on the "entropy

condition," which can be understood in analogy with the motion of a forest fire. With re-

spect to the forest fire, the entropy condition states that once a point has been "burnt" or

visited, it cannot be revisited. According to Sethian [37], any attempt to do so will not

allow for regaining of previous information, as it is lost.
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a. Shocks result in loss of information: The dotted lines are grid lines and the solid dots
are grid points. The thin solid line is the zero level set at time n, φ n = 0. Arrows indicate
the direction of motion. The bold solid line is the new zero level set at time n+1, φ n+1= 0.
The motion from time n to time n+1 results in the loss of information.

b. Shocks occur at local maximum for the above motion: The horizontal profile of φ n at
grid point i showing a local maximum at i.

Figure 1.4: First Classification for Front Propagation: Shock.
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a. Rarefaction: The dotted lines are grid lines and the solid dots are grid points. The thin
solid line is the zero level set at time n, φ n = 0. Arrows indicate the direction of motion.
The bold solid line is the new zero level set at time n+1, φ n+1= 0. Unlike shock, the motion
from time n to time n+1 does not result in the loss of information.

b. Rarefactions occur at local minimum for the above motion: The horizontal profile of φ n

at grid point i showing a local minimum at i.

Figure 1.5: Second Classification for Front Propagation: Rarefaction.
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The cases shown in Figures 1.4 and 1.5 are regulated according to the speed values

for both the left and right portion of the front [37]. The arrows on either side of the front

represent the direction of motion. The evolution of the front in time is solved though the

development of a solution to the local Riemann problem, as seen in Figure 1.6 [37].

Figure 1.6: Possible solutions to local Riemann problem. a(u1) and a(u2) are the speed
functions for the states u1 and u2.

As originally shown by Engquist and Osher [10], when solving non-linear hyperbolic

equations, if the speed function to the left of a point is negative and the speed function to

the right is positive, the motion will result in a "rarefaction fan" at that point, as seen in
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Figure 1.4 and Figure 1.6c. On the other hand, if the speed function to the left is positive

and the right is negative, the motion will result in a "shockwave," as seen in Figure 1.4 and

Figure 1.6d.

The rest of this work is organized as follows. The next section presents an overview

of the current approach, explaining how ideas from level set are incorporated into belief

propagation. Specifically, the proposed approach includes three new modifications to the

Efficient Belief Propagation approach [11]. They are (1) modification to the initial data cost

to encourage reference pixels to match to an interval in its disparity range rather than to a

pixel, (2) mutual consistency adjustment to encourage matches between extremal pixels of

the same type in both images, and (3) shifting of the minimum disparity within outgoing

messages based on the modified initial data cost of the two pixels involved to provide a

balance for the smoothness term. The operation in (1) is useful especially when corre-

sponding fronts in the reference and search images have an unequal number of pixels. The

following section presents results of the current work. The last section draws conclusions

and presents direction for future work.
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Chapter 2

MODIFIED EFFICIENT BELIEF PROPAGATION- PRESENT

WORK

2.1 Framework Using Level Set Concepts

Figure 2.1: Level Set Framework. The wave structure shown above indicates the varying
pixel intensity values along the current scanline. Each pixel is classified as either a local
extrema or local non-extrema based on the product of the forward and backward difference
between the intensity values of the current pixel and its left and right neighbors. Two
neighboring extremal points, such as pixels B and E, form a feature front. In the case of
front B, shown above, these two points are classified as a max and min extremal point
respectively. Each front consists of both a front type and strength; both are based on the
intensity differences between the extremal endpoints. Extremal points, like those listed
above, as well as pixels I and J, belong to two fronts; retaining the information concerning
both fronts in which they are associated, as well as a strength value based on the maximum
strength of their two fronts. On the other hand, non-extremal points, like pixels C and F-H,
are assigned both a front type and strength based on the front in which they are located.
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Table 2.1: Level Set Extremal and Non-Extremal Pixels

Number of Pts. Percent of Total Strong Pts. (PoT) Strong Pts. (PoPts)

Tsukuba
EX 73147 66.1413 26.1447 39.5286
NE 37445 33.38587 28.1883 83.2528

Venus
EX 104107 62.6313 27.0614 43.2075
NE 62115 37.3687 24.3752 65.229

Cones
EX 91686 54.3324 39.6486 72.9741
NE 77064 45.6676 40.1333 87.8815

Teddy
EX 96837 57.3849 32.1132 55.961
NE 71913 42.6151 32.9079 77.2211

According to the Level Set theory, shocks and rarefactions, as shown in Figures 1.4 and 1.5,

occur at local extrema. In this new framework, each pixel in the reference and search im-

ages is assigned a type classification: extremal (min or max), or non-extremal. Forward

and backward differences are used for classifying a pixel. For instance, if the backward

difference is negative and the forward difference is positive, the pixel is classified as a min.

On the other hand, if the backward difference is positive and the forward difference is neg-

ative, the pixel is classified as a max. However, if one of these intensity differences is 0,

the pixel is classified as a flat min or flat max, based on the other difference. All remaining

pixels are classified as non-extremal pixels. As shown in Figure 2.1, the wave structure

can be divided into fronts, based on neighboring extrema. Each extremal pixel is associ-

ated with two different fronts; both the type and strength of each front are calculated using

the intensity differences of these extremal pixels. Fronts are classified in three categories:

ascending, descending, or flat, based on the signed intensity difference of the neighboring

extremal pixels on a give scanline traveling from left to right. For instance, if the back-

ward difference for the current extremal pixel is negative, the left front associated with this

pixel is classified as descending; if positive, ascending. The forward difference applies

the opposite classification criteria for the right front; positive is ascending and negative is

descending. All remaining fronts are classified as flat. The absolute forward and backward

differences are used to calculate the strengths of the left and right fronts of the current ex-
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tremal pixel, and the strength at the extrema is defined based on the maximum of its left

and right strengths. All non-extremal pixels are assigned a strength and front classification

based on the front to which they belong.

Table 2.1 shows the number of extremal and non-extremal pixels that are found in each

of the input images, as well as the overall percentage of the image in which these pixels

represent. Additionally, most of the object within each of the images are surrounded to the

left and right on a given scanline by "strong fronts," meaning those with a strength greater

than a user-defined threshold, in this case 5. In the last two columns in Table 2.1, the

percentage of total (PoT) shows how many strong pixels, with a strength greater than 5, are

found within the entire image, while the percentage of points (PoPts) shows the percentage

of strong points from within the extrema and non-extremal groups.

From Table 2.1, several facts about local extrema versus non-extrema can be deduced.

For instance, there are typically more local extrema than non-extrema. This may come as

a surprise, as each front only has two extremal pixels, but often numerous non-extrema.

This can be explained by the fact that within the low textured regions, consisting of weaker

fronts, the majority of the pixels are located on fronts consisting of only two pixels and as

classified as local extrema. In most cases, the local non-extrema found in these areas are

either located on a flat-type front or a very weak front with only two or three non-extrema.

Additionally, the largest portion of both extrema and non-extrema are classified as "weak,"

due to their low strength, especially those found in low texture regions. While the "strong"

points represent a low percentage of all the pixels in the image, a significant majority of the

extrema and non-extrema are classified as "strong."
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2.2 Modified Initial Data Cost

Figure 2.2: Modified Initial Data Cost. An interval is formed by consecutive pixels such
as interval B. This illustration shows that the intensity at pixel A intersects interval B; a
fractional disparity ( fB) exists within this interval. Additionally, the data cost for pixel B is
set to 0, as it represents this interval. This procedure is repeated at all intervals in pixel A’s
disparity range.

In the results, shown in the next chapter, the data cost is initially calculated using two

methods: the standard absolute difference as well as the work of Birchfield and Tomasi

[2], for a comparison. However, in cases like interval B in Figure 2.2, a modified initial

data cost is calculated as follows: as shown in Figure 2.2, an interval is defined as two

neighboring pixels on the same scanline and the starting point of each interval is referenced

according to an integer disparity value. For instance, interval B in Figure 2.2 is referenced

with respect to the search image pixel B, where each interval represents an intensity range.

If the reference pixel’s intensity falls within this range, a fractional disparity will be set for

the interval. The fractional disparity fB is calculated as fB = dB +
|IL

B−IR
A |

|IL
C−IL

B |
, where dB is the

integer disparity at B, IL
B and IL

C are the intensity values on the search image scanline, and

IR
A is the intensity value for the current pixel on the reference scanline. Additionally, the
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data cost at this disparity value is set to 0. This concept of intervals is especially helpful

in those instances where corresponding fronts in the reference and search images have an

unequal number of non-extremal pixels.

2.3 Message Adjustment Based on Zero Data Costs

As stated previously, belief propagation includes a smoothness cost penalty in each outgo-

ing message for discontinuity between the sender and receiver. In addition to the standard

penalty given by the discontinuity difference, the smoothness cost is regulated by a con-

stant value known as the "rate of increase." This rate of increase allows each message to

relay the amount of discontinuity that will be tolerated with higher values resulting in more

smoothed, continuous disparity regions. In belief propagation, this smoothness cost will

force each pixel to seek a unique solution often in-line with the initial correspondence sug-

gested by the data cost.

However, mistakes are a result of sampling related errors in pixel distribution. The

operation discussed in this section provides a balance to the smoothness cost by allowing

for an interval-based alternative correspondence to be located.

This adjustment is intended to shift the minimum cost location in the outgoing message

since the final disparity is affected by the minimum cost location. If this sender is a non-

extrema, this adjustment is applied if the data cost is 0 at the minimum cost interval of the

current pixel (i)’s outgoing message. On the other hand, if the sender is an extrema, a data

cost of 0 is not required if the sender’s match is an extrema of the same type as the sender.

For the purposes of this discussion, assume that the neighbor receiving the message is the

left neighbor (i-1). The outgoing messages can be categorized into four cases based on the

type of the sender and receiver: (1) extrema sends to extrema, (2) extrema sends to non-

extrema, (3) non-extrema sends to extrema, and (4) non-extrema sends to non-extrema. All

cases require that the fronts in both the left and right image be of the same type. These

cases are treated as follows; refer to Figure 2.3.
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Figure 2.3: Message Adjustment Based on Zero Data Cost ( i [current reference pixel], i-1
[left neighbor of reference pixel], mi [match for current reference pixel], and mi−1 [match
for left neighbor] ).
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Case 1: Both the Sender i and Receiver i-1 are extrema
(a) If mi is of the same extrema type as i and mi−1 is of the same extrema type as i-1, then
no shifting is required. Figure 2.3a (i)
(b) If i is of the same extrema type as mi, but mi−1 is a non-extrema, then check the interval
at mi to see if i-1 has a data cost of 0. If it does, shift the minimum for i’s outgoing message
by -1. Figure 2.3a (ii)
(c) If mi and mi−1 are both non-extrema pixels, then check the interval at mi to see if both
i and i-1 have a data cost of 0. If they do, shift the minimum for i’s outgoing message.
Figure 2.3a (iii)
(d) If mi−1 is of the same extrema type as i-1 and i has a data cost of 0 for the interval at
mi, then no shifting is required. Figure 2.3a (iv)

Case 2: Sender i is an extrema* and Receiver i-1 is a non-extrema
(a) If i is of the same extrema type as mi and i-1 has a data cost of 0 for the interval at mi,
then shift the minimum for i’s outgoing message. Figure 2.3b (i)
(b) If mi is a non-extrema, and both i and i-1 have a data cost of 0 for the interval at mi,
then shift the minimum for i’s outgoing message. Figure 2.3b (ii)
(c, d) If both i and i-1 have a data cost of 0 for the interval at mi, then shift the minimum
for i’s outgoing message. Figure 2.3b (iii, iv)
* Both extrema types (min and max) are handled in same manner.

Case 3: Sender is a non-extrema and Receiver is an extrema
(a , d) If mi−1 is of the same extrema type as i-1 and i has a data cost of 0 for the interval at
mi, then no shifting is required. Figure 2.3c (i, iv)
(b) If mi−1 is a non-extrema and both i and i-1 have a data cost of 0 for the interval at mi,
then shift the minimum for i’s outgoing message. Figure 2.3c (ii)
(c) If both i and i-1 have a data cost of 0 for the interval at mi, then shift the minimum for
i’s outgoing message. Figure 2.3c (iii)

Case 4: Both the Sender and Receiver are non-extrema
(a) If both i and i-1 have a data cost of 0 for the interval at mi, then shift the minimum for
i’s outgoing message. Figure 2.3d (i)

** In all the above cases, mi and mi−1 represent the initial match points in the reference
image for i and i-1, respectively.
*** Additionally, right-to-left correspondence includes the interval [Imi, Imi−1 ] in the search
image for determining zero data cost, while left-to-right correspondence has a similar in-
terval setup [Imi, Imi+1].

This shifting operation moves the minimum cost location for i’s outgoing message one

point to the right. The operation is only applied to the left and right outgoing messages, and

only when both i and i-1 meet the minimum strength threshold. The outgoing message for
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the right neighbor is handled in the same way, except that the minimum disparity is shifted

to the left.

2.4 Mutual Correspondence Adjustment

This adjustment is intended to encourage mutual correspondence between extremal pixels

in the left and right images by adjusting the minimum cost locations for the respective

outgoing messages. This mutual correspondence seeks to match pixels between the left

and right images, where the match pixel is of the same type as the current pixel (i). When

adjustment applies only in those cases where the sender is an extremal pixel, the type of

the receiver is irrelevant. Mutual correspondence requires examining the corresponding

scanlines from the left and right images simultaneously.

Figure 2.4: Profile Example for Mutual Consistency

Consider the illustration in Figure 2.4, where pixel i (the current reference pixel) matches

pixel mi in the search image. If pixels i and mi are of the same type or i has a data cost

of 0 for the interval at mi, no adjustment is required. Otherwise, a 1-pixel neighborhood

of mi on the left scanline is searched for a pixel of the same type as i; if none is found, no
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adjustment is made. Suppose one of the 1-pixel neighborhood, say m′i, is the same type as

i. Then, the match for m′i on the right scanline (i′) is found; if i′ is not within the 1-pixel

neighborhood of i, then no adjustment is made. If m′i matches i, then only minimum cost

location for i’s outgoing message is reset to point to m′i. Otherwise, if the intensity differ-

ences between (i and i′) and (mi and m′i) is significant, the minimum cost locations for the

outgoing messages from m′i and i are adjusted; the new minimum cost location for both

messages is the pixel difference between i and m′i.
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Chapter 3

MODIFIED EFFICIENT BELIEF PROPAGATION- RESULTS

For all the experiments discussed in this chapter, each algorithm, using the input image

shown in Figure 3.1, was run on a Pentium D Dual Core 2.8 GHz computer. The algorithms

do not use any truncation for data cost or messages or normalization of intensities for the

data cost. For each algorithm, five coarse-to-fine levels were used and each level had five

iterations. While the new modified approach performed several additional operations, it

retained all the elements found in the standard EBP. As for the parameters, given that

truncation was removed when calculating messages, the parameter ’d’ used in the original

EBP approach was not necessary. However, the rate of increase, ’s’, used when calculating

the smoothness cost was set to 10.0.
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Figure 3.1: Images: Reference image (left column) and ground truth image (right column)
produced by Middlebury [34, 33, 35, 15].

In Figures 3.2 - 3.5, the disparity results show a comparison between Efficient Belief

Propagation and the modified Efficient Belief Propagation using both absolute difference

and Birchfield-Tomasi’s pixel dissimilarity to calculate the initial data cost. The first point

to mention is that the results produced in this work are similar to those of the Efficient Be-

lief Propagation. In the Efficient Belief Propagation results, the Birchfield-Tomasi results

appear to be smoother than those produced using the absolute difference, often resulting

in fewer errors when compared with the ground truth. For instance, less discontinuity is

shown in all the images than in the absolute difference results. Additionally, BT does not

produce as much "bleeding" of disparity values between objects as seen in the results of
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AD; for instance, EBP’s Teddy results in Figure 3.2. On the other hand, the smoothness of

BT often sacrifices some of the sharpness of the objects’ edges in images like Cones and

Teddy that is found in the absolute difference results.

This occurrence is also found in these same images when used as input for the modified

Efficient Belief Propagation. However, in this case, both absolute difference and Birchfield-

Tomasi provide a slight improvement over their Efficient Belief Propagation counterparts.

Though this difference is seen less in the case of BT, as the "cross-checking" interval pro-

cess in this algorithm may often interfere with the shifting operations in mEBP. One ex-

ample of the difference in the operations between EBP and mEBP is the manner in which

to handle out-of-bounds disparity locations when calculating the data cost. As one may

notice, the standard approach is to set all data cost within the right or left edge disparity

region, depending on the direction of motion between the current images, to 0 and place

the final disparity decision solely on the messages sent to these pixels by the neighboring

pixels. Despite the smoother appearance along the edges, this process often causes a loss of

information, as shown in Figures 3.2 and 3.3 for Cones and Teddy, where portions or entire

objects are lost due to the strong influence of neighboring points with different disparity

values and the lack of an influence from data cost of the current pixel. On the other hand,

the modified version provides some autonomy by calculating all disparity values within

the bounds of the image and restricting those that are not, allowing each pixel to calculate

its data cost and choose a final disparity from all available locations, while discouraging

choosing any location outside the image.
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Figure 3.2: Comparison of EBP images with different data cost methods: Absolute differ-
ence. Disparity results (left) and Bad pixels (error>1.0) (right).
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Figure 3.3: Comparison of EBP images with different data cost methods: Birchfield-
Tomasi. Disparity results (left) and Bad pixels (error>1.0) (right).
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Figure 3.4: Comparison of modified EBP images with different data cost methods: Abso-
lute difference. Disparity results (left) and Bad pixels (error>1.0) (right).
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Figure 3.5: Comparison of modified EBP images with different data cost methods:
Birchfield-Tomasi. Disparity results (left) and Bad pixels (error>1.0) (right).

Table 3.1: Execution Times (sec)

Tsukuba Venus Cones Teddy
AD BT AD BT AD BT AD BT

EBP
MM 1 1 1 1 1 1 1 1
IDC 0 0 0 2 1 3 0 3
HBP 2 1 3 4 9 7 7 7

mEBP
MM 1 0 1 2 1 2 1 3
IDC 0 1 0 2 1 4 1 4
HBP 3 4 8 8 12 12 11 11

In Table 3.1, the time calculations show what one would expect; the standard EBP is
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obviously faster, as it has fewer operations. However, one point of interest is that even

with the increased computation requirement, the modified version still required, in most

cases, less than 15 seconds to run. Additionally, one can see that the overall increase in the

computation time for each image was often proportional to the length of its disparity range,

with the message passing operations in belief propagation requiring the most time.

Table 3.2: Middlebury Results (Non-Occluded Error Percentage and Overall Average
Ranks)

Rank Tsukuba Venus Teddy Cones
AD BT AD BT AD BT AD BT AD BT

EBP 72.0 71.5 2.85 2.85 1.41 1.22 13.7 13.0 8.82 8.69
mEBP 71.2 70.5 3.09 2.83 1.35 1.54 10.4 10.3 8.47 6.73

Table 3.3: Middlebury Rankings for Non-Occluded Pixels

Tsukuba Venus Teddy Cones
AD BT AD BT AD BT AD BT

Rank
EBP 57 58 62 57 78 78 76 76

mEBP 64 57 61 64 66 66 76 72

In Tables 3.2 and 3.3, the accuracy ratings from the Middlebury Evaluation for non-

occluded pixels are shown for all the above images. Though the rankings for both EBP

and mEBP are lower than those of other implementations, the accuracy of the modified

approach is slightly higher for both absolute difference and Birchfield-Tomasi[2]. In those

instances where the standard EBP has a lower error percentage, the difference is minimal.

As for the rankings, many of the top approaches, especially the global ones, use additional

operations like image segmentations as well as special formulas for identifying and han-

dling occlusion. This new approach does not perform any of these additional operations,

because, like Felzenszwalb and Huttenlocher [11], it is intended to provide a simple so-

lution, while showing a slight improvement in accuracy through the use of levelset-based

operations. This first set of Middlebury results only outlines the error percentages of the
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non-occluded pixels as neither method currently has an explicit means of handling occlu-

sion.

Table 3.4: Middlebury Results (Occluded and Discontinuous Error Percentage and Average
Overall Error Percentage)

Tsukuba Venus
Average Error AD BT AD BT
AD BT Occ Discon Occ Discon Occ Discon Occ Discon

EBP 12.8 12.5 4.94 15.0 4.88 15.1 2.41 18.2 2.22 15.4
mEBP 12.1 11.8 5.01 16.2 4.84 15.0 2.98 16.4 3.21 18.6

Table 3.5: Middlebury Results (Occluded and Discontinuous Error Percentages)

Teddy Cones
AD BT AD BT

Occ Discon Occ Discon Occ Discon Occ Discon
EBP 22.6 27.1 22.0 27.1 17.3 19.4 17.2 20.1

mEBP 19.5 24.3 19.5 24.9 18.5 19.3 17.1 17.5

Table 3.6: Middlebury Rankings for Occluded and Discontinuous Pixels

Tsukuba Venus
AD BT AD BT

Occ Discon Occ Discon Occ Discon Occ Discon

Rank
EBP 68 72 68 72 62 74 61 70

mEBP 68 74 67 71 66 71 71 76

Table 3.7: Middlebury Rankings for Occluded and Discontinuous Pixels

Teddy Cones
AD BT AD BT

Occ Discon Occ Discon Occ Discon Occ Discon

Rank
EBP 79 82 79 82 78 76 77 80

mEBP 76 75 75 75 82 76 77 75

As with the non-occluded regions shown earlier, the occlusion and discontinuity results

reiterate the point that regardless of which method produces the best results for a particular



35

image, the difference is typically small. Though in both cases, the occlusion portions are

more likely to be worse, but it is necessary to show these results as they provide a complete

picture of the comparison being made for the above image results in Figures 3.2-3.5. In

most of the cases shown in Tables 3.2- 3.7, the results show that this new modified version

produces lower error percentages and higher rankings, with the majority of the improved

scores being found from the results of the modified EBP using BT.
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Figure 3.6: Histograms comparing type matches between EBP images with different data
cost methods: Absolute difference (left) vs. Birchfield-Tomasi (right).
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Figure 3.7: Histograms comparing type matches between the modified EBP images with
different data cost methods: Absolute difference (left) vs. Birchfield-Tomasi (right).
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In Figures 3.6 and 3.7, these histograms show the number of correct versus incorrect

type matches, based on the strength of each pixel. In this case, only the extremal pixels

were used to illustrate the differences between standard EBP and mEBP, as they are the

group most affected by the modified efficient belief propagation. Additionally, these fig-

ures also show the differing results using absolute difference and Birchfield-Tomasi’s pixel

dissimilarity for calculating the data cost. In each of the histograms, there are two sets of

results: the bottom bar graph showing the number of incorrect type matches and the top bar

graph showing the number of correct type matches. As shown in each histogram example,

the number of incorrect matches decreases as the strength of the pixels increase. This is due

to several factors including the increasing gradient difference between neighboring pixels

as the strength increase. This large difference affects the data cost, often resulting in larger

values for the neighbors of the correct type match correspondence point; this is especially

true for extremal pixels. Additionally, in the case of mEBP results, the stronger pixels have

greater accuracy because two of the three main contributions in this approach were geared

towards improving the stronger extremal correspondences, while indirectly influencing the

weaker pixels through the propagation process.

Table 3.8: Accuracy of Data Type Matching for Extremal Pixels

Tsukuba Venus Cones Teddy
AD BT AD BT AD BT AD BT

EBP 89.0451 88.9125 88.5318 87.8916 82.7005 81.6843 84.3715 83.5795
mEBP 92.0712 91.8915 91.5711 90.9534 89.0033 88.081 89.7458 89.2968

Table 3.8 shows the accuracy percentages of the histograms for Efficient Belief Propa-

gation (EBP) and the modified Efficient Belief Propagation (mEBP) using absolute differ-

ence and Birchifeld-Tomasi [2] data cost. From this table, one can see that the modified

version, with its fractional disparities, performed in a slightly more accurate fashion across

the board. This is due, in part, to the LevelSet-based operations, especially those that en-

couraged mutual correspondence between extremal pixels of the same type.
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Figure 3.8: Profiles showing correct match examples for large intensity difference corre-
spondence. Top row: EBP (Teddy and Venus) and bottom row: mEBP (Teddy and Venus).

Recalling the intensity difference images from Chapter 1, the large intensity differ-

ence matches within the objects’ interior were suspected of being incorrect. This is, of

course, not always the case, as shown in Figure 3.8. Each of these illustrations represents

correspondence produced by efficient belief propagation and modified efficient belief prop-

agation that show correct correspondence with large intensity differences. This is due to

a lighting change between the cameras responsible for these images, resulting in a shift in

the intensity values between many correctly corresponding points in each image.
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Chapter 4

CONCLUSION AND DISCUSSION OF FUTURE WORK

Through the incorporation of levelset and levelset-based operations, this new approach

provides a solution that not only increases the accuracy of the standard Efficient Belief

Propagation, but also does not cause a significant loss in efficiency. The contributions in the

new approach provide an alternative solution for stereo matching, without requiring extra,

computationally expensive operations like images segmentation, plane fitting, or window-

based data cost calculation. On the other hand, even with the improved accuracy provided

by this new approach, there is always room for further advancement.

As for the future development in this area, there are a variety of possibilities. For

instance, the development of a less computationally expensive alternative to mutual cor-

respondence for occlusion detection is definitely worth exploring and implementing. In

terms of this algorithm, it is always possible to adopt concepts, like those from Sarkis and

Diepold [32], Nister et al. [49, 50], and Trinh [44], in order to improve efficiency by re-

ducing the number of participating pixels. It may also be possible to improve the efficiency

by dividing the workload using parallel processing operations through shared memory, es-

pecially for handling message computation. Alternatively, it could be possible to develop

a local-based approach, incorporating principles from global approaches like belief propa-

gation with the inherent efficiency found in local operations, to provide a faster and more

accurate solution that could eventually be performed in realtime. In any case, a definite step

in the future is to move from stereo matching to optical flow, because this is the problem

of current interest in many application domains. In whatever direction this work proceeds,

the current results show good potential for the future.
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