281 research outputs found

    FML: Face Model Learning from Videos

    Full text link
    Monocular image-based 3D reconstruction of faces is a long-standing problem in computer vision. Since image data is a 2D projection of a 3D face, the resulting depth ambiguity makes the problem ill-posed. Most existing methods rely on data-driven priors that are built from limited 3D face scans. In contrast, we propose multi-frame video-based self-supervised training of a deep network that (i) learns a face identity model both in shape and appearance while (ii) jointly learning to reconstruct 3D faces. Our face model is learned using only corpora of in-the-wild video clips collected from the Internet. This virtually endless source of training data enables learning of a highly general 3D face model. In order to achieve this, we propose a novel multi-frame consistency loss that ensures consistent shape and appearance across multiple frames of a subject's face, thus minimizing depth ambiguity. At test time we can use an arbitrary number of frames, so that we can perform both monocular as well as multi-frame reconstruction.Comment: CVPR 2019 (Oral). Video: https://www.youtube.com/watch?v=SG2BwxCw0lQ, Project Page: https://gvv.mpi-inf.mpg.de/projects/FML19

    Learning to Generate Facial Depth Maps

    Get PDF
    In this paper, an adversarial architecture for facial depth map estimation from monocular intensity images is presented. By following an image-to-image approach, we combine the advantages of supervised learning and adversarial training, proposing a conditional Generative Adversarial Network that effectively learns to translate intensity face images into the corresponding depth maps. Two public datasets, namely Biwi database and Pandora dataset, are exploited to demonstrate that the proposed model generates high-quality synthetic depth images, both in terms of visual appearance and informative content. Furthermore, we show that the model is capable of predicting distinctive facial details by testing the generated depth maps through a deep model trained on authentic depth maps for the face verification task

    Deep face tracking and parsing in the wild

    Get PDF
    Face analysis has been a long-standing research direction in the field of computer vision and pattern recognition. A complete face analysis system involves solving several tasks including face detection, face tracking, face parsing, and face recognition. Recently, the performance of methods in all tasks has significantly improved thanks to the employment of Deep Convolutional Neural Networks (DCNNs). However, existing face analysis algorithms mainly focus on solving facial images captured in the constrained laboratory environment, and their performance on real-world images has remained less explored. Compared with the lab environment, the in-the-wild settings involve greater diversity in face sizes, poses, facial expressions, background clutters, lighting conditions and imaging quality. This thesis investigates two fundamental tasks in face analysis under in-the-wild settings: face tracking and face parsing. Both tasks serve as important prerequisites for downstream face analysis applications. However, in-the-wild datasets remain scarce in both fields and models have not been rigorously evaluated in such settings. In this thesis, we aim to bridge that gap of lacking in-the-wild data, evaluate existing methods in these settings, and develop accurate, robust and efficient deep learning-based methods for the two tasks. For face tracking in the wild, we introduce the first in-the-wild face tracking dataset, MobiFace, that consists of 80 videos captured by mobile phones during mobile live-streaming. The environment of the live-streaming performance is fully unconstrained and the interactions between users and mobile phones are natural and spontaneous. Next, we evaluate existing tracking methods, including generic object trackers and dedicated face trackers. The results show that MobiFace represent unique challenges in face tracking in the wild and cannot be readily solved by existing methods. Finally, we present a DCNN-based framework, FT-RCNN, that significantly outperforms other methods in face tracking in the wild. For face parsing in the wild, we introduce the first large-scale in-the-wild face dataset, iBugMask, that contains 21, 866 training images and 1, 000 testing images. Unlike existing datasets, the images in iBugMask are captured in the fully unconstrained environment and are not cropped or preprocessed of any kind. Manually annotated per-pixel labels for eleven facial regions are provided for each target face. Next, we benchmark existing parsing methods and the results show that iBugMask is extremely challenging for all methods. By rigorous benchmarking, we observe that the pre-processing of facial images with bounding boxes in face parsing in the wild introduces bias. When cropping the face with a bounding box, a cropping margin has to be hand-picked. If face alignment is used, fiducial landmarks are required and a predefined alignment template has to be selected. These additional hyper-parameters have to be carefully considered and can have a significant impact on the face parsing performance. To solve this, we propose Region-of-Interest (RoI) Tanh-polar transform that warps the whole image to a fixed-sized representation. Moreover, the RoI Tanh-polar transform is differentiable and allows for rotation equivariance in 1 DCNNs. We show that when coupled with a simple Fully Convolutional Network, our RoI Tanh-polar transformer Network has achieved state-of-the-art results on face parsing in the wild. This thesis contributes towards in-the-wild face tracking and face parsing by providing novel datasets and proposing effective frameworks. Both tasks can benefit real-world downstream applications such as facial age estimation, facial expression recognition and lip-reading. The proposed RoI Tanh-polar transform also provides a new perspective in how to preprocess the face images and make the DCNNs truly end-to-end for real-world face analysis applications.Open Acces

    Multi-view 3D face reconstruction in the wild using siamese networks

    Get PDF
    In this work, we present a novel learning based approach to reconstruct 3D faces from a single or multiple images. Our method uses a simple yet powerful architecture based on siamese neural networks that helps to extract relevant features from each view while keeping the models small. Instead of minimizing multiple objectives, we propose to simultaneously learn the 3D shape and the individual camera poses by using a single term loss based on the reprojection error, which generalizes from one to multiple views. This allows to globally optimize the whole scene without having to tune any hyperparameters and to achieve low reprojection errors, which are important for further texture generation. Finally, we train our model on a large scale dataset with more than 6,000 facial scans. We report competitive results in 3DFAW 2019 challenge, showing the effectiveness of our method.Peer ReviewedPostprint (author's final draft
    • …
    corecore