462 research outputs found

    Adaptive Mesh Refinement for Hyperbolic Systems based on Third-Order Compact WENO Reconstruction

    Get PDF
    In this paper we generalize to non-uniform grids of quad-tree type the Compact WENO reconstruction of Levy, Puppo and Russo (SIAM J. Sci. Comput., 2001), thus obtaining a truly two-dimensional non-oscillatory third order reconstruction with a very compact stencil and that does not involve mesh-dependent coefficients. This latter characteristic is quite valuable for its use in h-adaptive numerical schemes, since in such schemes the coefficients that depend on the disposition and sizes of the neighboring cells (and that are present in many existing WENO-like reconstructions) would need to be recomputed after every mesh adaption. In the second part of the paper we propose a third order h-adaptive scheme with the above-mentioned reconstruction, an explicit third order TVD Runge-Kutta scheme and the entropy production error indicator proposed by Puppo and Semplice (Commun. Comput. Phys., 2011). After devising some heuristics on the choice of the parameters controlling the mesh adaption, we demonstrate with many numerical tests that the scheme can compute numerical solution whose error decays as N3\langle N\rangle^{-3}, where N\langle N\rangle is the average number of cells used during the computation, even in the presence of shock waves, by making a very effective use of h-adaptivity and the proposed third order reconstruction.Comment: many updates to text and figure

    On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes

    Get PDF
    Third order WENO and CWENO reconstruction are widespread high order reconstruction techniques for numerical schemes for hyperbolic conservation and balance laws. In their definition, there appears a small positive parameter, usually called ϵ\epsilon, that was originally introduced in order to avoid a division by zero on constant states, but whose value was later shown to affect the convergence properties of the schemes. Recently, two detailed studies of the role of this parameter, in the case of uniform meshes, were published. In this paper we extend their results to the case of finite volume schemes on non-uniform meshes, which is very important for h-adaptive schemes, showing the benefits of choosing ϵ\epsilon as a function of the local mesh size hjh_j. In particular we show that choosing ϵ=hj2\epsilon=h_j^2 or ϵ=hj\epsilon=h_j is beneficial for the error and convergence order, studying on several non-uniform grids the effect of this choice on the reconstruction error, on fully discrete schemes for the linear transport equation, on the stability of the numerical schemes. Finally we compare the different choices for ϵ\epsilon in the case of a well-balanced scheme for the Saint-Venant system for shallow water flows and in the case of an h-adaptive scheme for nonlinear systems of conservation laws and show numerical tests for a two-dimensional generalisation of the CWENO reconstruction on locally adapted meshes

    An efficient class of increasingly high-order ENO schemes with multi-resolution

    Full text link
    We construct an efficient class of increasingly high-order (up to 17th-order) essentially non-oscillatory schemes with multi-resolution (ENO-MR) for solving hyperbolic conservation laws. The candidate stencils for constructing ENO-MR schemes range from first-order one-point stencil increasingly up to the designed very high-order stencil. The proposed ENO-MR schemes adopt a very simple and efficient strategy that only requires the computation of the highest-order derivatives of a part of candidate stencils. Besides simplicity and high efficiency, ENO-MR schemes are completely parameter-free and essentially scale-invariant. Theoretical analysis and numerical computations show that ENO-MR schemes achieve designed high-order convergence in smooth regions which may contain high-order critical points (local extrema) and retain ENO property for strong shocks. In addition, ENO-MR schemes could capture complex flow structures very well
    corecore