31,758 research outputs found

    Accurate and efficient algorithms for boundary element methods in electromagnetic scattering: a tribute to the work of F. Olyslager

    Get PDF
    Boundary element methods (BEMs) are an increasingly popular approach to model electromagnetic scattering both by perfect conductors and dielectric objects. Several mathematical, numerical, and computational techniques pullulated from the research into BEMs, enhancing its efficiency and applicability. In designing a viable implementation of the BEM, both theoretical and practical aspects need to be taken into account. Theoretical aspects include the choice of an integral equation for the sought after current densities on the geometry's boundaries and the choice of a discretization strategy (i.e. a finite element space) for this equation. Practical aspects include efficient algorithms to execute the multiplication of the system matrix by a test vector (such as a fast multipole method) and the parallelization of this multiplication algorithm that allows the distribution of the computation and communication requirements between multiple computational nodes. In honor of our former colleague and mentor, F. Olyslager, an overview of the BEMs for large and complex EM problems developed within the Electromagnetics Group at Ghent University is presented. Recent results that ramified from F. Olyslager's scientific endeavors are included in the survey

    Doppler cooling of gallium atoms: 2. Simulation in complex multilevel systems

    Full text link
    This paper derives a general procedure for the numerical solution of the Lindblad equations that govern the coherences arising from multicoloured light interacting with a multilevel system. A systematic approach to finding the conservative and dissipative terms is derived and applied to the laser cooling of gallium. An improved numerical method is developed to solve the time-dependent master equation and results are presented for transient cooling processes. The method is significantly more robust, efficient and accurate than the standard method and can be applied to a broad range of atomic and molecular systems. Radiation pressure forces and the formation of dynamic dark-states are studied in the gallium isotope 66Ga.Comment: 15 pages, 8 figure

    Multilevel Sparse Grid Methods for Elliptic Partial Differential Equations with Random Coefficients

    Full text link
    Stochastic sampling methods are arguably the most direct and least intrusive means of incorporating parametric uncertainty into numerical simulations of partial differential equations with random inputs. However, to achieve an overall error that is within a desired tolerance, a large number of sample simulations may be required (to control the sampling error), each of which may need to be run at high levels of spatial fidelity (to control the spatial error). Multilevel sampling methods aim to achieve the same accuracy as traditional sampling methods, but at a reduced computational cost, through the use of a hierarchy of spatial discretization models. Multilevel algorithms coordinate the number of samples needed at each discretization level by minimizing the computational cost, subject to a given error tolerance. They can be applied to a variety of sampling schemes, exploit nesting when available, can be implemented in parallel and can be used to inform adaptive spatial refinement strategies. We extend the multilevel sampling algorithm to sparse grid stochastic collocation methods, discuss its numerical implementation and demonstrate its efficiency both theoretically and by means of numerical examples

    Multilevel Artificial Neural Network Training for Spatially Correlated Learning

    Get PDF
    Multigrid modeling algorithms are a technique used to accelerate relaxation models running on a hierarchy of similar graphlike structures. We introduce and demonstrate a new method for training neural networks which uses multilevel methods. Using an objective function derived from a graph-distance metric, we perform orthogonally-constrained optimization to find optimal prolongation and restriction maps between graphs. We compare and contrast several methods for performing this numerical optimization, and additionally present some new theoretical results on upper bounds of this type of objective function. Once calculated, these optimal maps between graphs form the core of Multiscale Artificial Neural Network (MsANN) training, a new procedure we present which simultaneously trains a hierarchy of neural network models of varying spatial resolution. Parameter information is passed between members of this hierarchy according to standard coarsening and refinement schedules from the multiscale modelling literature. In our machine learning experiments, these models are able to learn faster than default training, achieving a comparable level of error in an order of magnitude fewer training examples.Comment: Manuscript (24 pages) and Supplementary Material (4 pages). Updated January 2019 to reflect new formulation of MsANN structure and new training procedur
    • …
    corecore