4 research outputs found

    Accumulating regional density dissimilarity for concept drift detection in data streams

    Full text link
    © 2017 Elsevier Ltd In a non-stationary environment, newly received data may have different knowledge patterns from the data used to train learning models. As time passes, a learning model's performance may become increasingly unreliable. This problem is known as concept drift and is a common issue in real-world domains. Concept drift detection has attracted increasing attention in recent years. However, very few existing methods pay attention to small regional drifts, and their accuracy may vary due to differing statistical significance tests. This paper presents a novel concept drift detection method, based on regional-density estimation, named nearest neighbor-based density variation identification (NN-DVI). It consists of three components. The first is a k-nearest neighbor-based space-partitioning schema (NNPS), which transforms unmeasurable discrete data instances into a set of shared subspaces for density estimation. The second is a distance function that accumulates the density discrepancies in these subspaces and quantifies the overall differences. The third component is a tailored statistical significance test by which the confidence interval of a concept drift can be accurately determined. The distance applied in NN-DVI is sensitive to regional drift and has been proven to follow a normal distribution. As a result, the NN-DVI's accuracy and false-alarm rate are statistically guaranteed. Additionally, several benchmarks have been used to evaluate the method, including both synthetic and real-world datasets. The overall results show that NN-DVI has better performance in terms of addressing problems related to concept drift-detection

    Resample-based Ensemble Framework for Drifting Imbalanced Data Streams

    Get PDF
    Machine learning in real-world scenarios is often challenged by concept drift and class imbalance. This paper proposes a Resample-based Ensemble Framework for Drifting Imbalanced Stream (RE-DI). The ensemble framework consists of a long-term static classifier to handle gradual and multiple dynamic classifiers to handle sudden concept drift. The weights of the ensemble classifier are adjusted from two aspects. First, a time-decayed strategy decreases the weights of the dynamic classifiers to make the ensemble classifier focus more on the new concept of the data stream. Second, a novel reinforcement mechanism is proposed to increase the weights of the base classifiers that perform better on the minority class and decrease the weights of the classifiers that perform worse. A resampling buffer is used for storing instances of the minority class to balance the imbalanced distribution over time. In our experiment, we compare the proposed method with other state-of-the-art algorithms on both real-world and synthetic data streams. The results show that the proposed method achieves the best performance in terms of both the Prequential AUC and accuracy

    Solving the challenges of concept drift in data stream classification.

    Get PDF
    The rise of network connected devices and applications leads to a significant increase in the volume of data that are continuously generated overtime time, called data streams. In real world applications, storing the entirety of a data stream for analyzing later is often not practical, due to the data stream’s potentially infinite volume. Data stream mining techniques and frameworks are therefore created to analyze streaming data as they arrive. However, compared to traditional data mining techniques, challenges unique to data stream mining also emerge, due to the high arrival rate of data streams and their dynamic nature. In this dissertation, an array of techniques and frameworks are presented to improve the solutions on some of the challenges. First, this dissertation acknowledges that a “no free lunch” theorem exists for data stream mining, where no silver bullet solution can solve all problems of data stream mining. The dissertation focuses on detection of changes of data distribution in data stream mining. These changes are called concept drift. Concept drift can be categorized into many types. A detection algorithm often works only on some types of drift, but not all of them. Because of this, the dissertation finds specific techniques to solve specific challenges, instead of looking for a general solution. Then, this dissertation considers improving solutions for the challenges of high arrival rate of data streams. Data stream mining frameworks often need to process vast among of data samples in limited time. Some data mining activities, notably data sample labeling for classification, are too costly or too slow in such large scale. This dissertation presents two techniques that reduce the amount of labeling needed for data stream classification. The first technique presents a grid-based label selection process that apply to highly imbalanced data streams. Such data streams have one class of data samples vastly outnumber another class. Many majority class samples need to be labeled before a minority class sample can be found due to the imbalance. The presented technique divides the data samples into groups, called grids, and actively search for minority class samples that are close by within a grid. Experiment results show the technique can reduce the total number of data samples needed to be labeled. The second technique presents a smart preprocessing technique that reduce the number of times a new learning model needs to be trained due to concept drift. Less model training means less data labels required, and thus costs less. Experiment results show that in some cases the reduced performance of learning models is the result of improper preprocessing of the data, not due to concept drift. By adapting preprocessing to the changes in data streams, models can retain high performance without retraining. Acknowledging the high cost of labeling, the dissertation then considers the scenario where labels are unavailable when needed. The framework Sliding Reservoir Approach for Delayed Labeling (SRADL) is presented to explore solutions to such problem. SRADL tries to solve the delayed labeling problem where concept drift occurs, and no labels are immediately available. SRADL uses semi-supervised learning by employing a sliding windowed approach to store historical data, which is combined with newly unlabeled data to train new models. Experiments show that SRADL perform well in some cases of delayed labeling. Next, the dissertation considers improving solutions for the challenge of dynamism within data streams, most notably concept drift. The complex nature of concept drift means that most existing detection algorithms can only detect limited types of concept drift. To detect more types of concept drift, an ensemble approach that employs various algorithms, called Heuristic Ensemble Framework for Concept Drift Detection (HEFDD), is presented. The occurrence of each type of concept drift is voted on by the detection results of each algorithm in the ensemble. Types of concept drift with votes past majority are then declared detected. Experiment results show that HEFDD is able to improve detection accuracy significantly while reducing false positives. With the ability to detect various types of concept drift provided by HEFDD, the dissertation tries to improve the delayed labeling framework SRADL. A new combined framework, SRADL-HEFDD is presented, which produces synthetic labels to handle the unavailability of labels by human expert. SRADL-HEFDD employs different synthetic labeling techniques based on different types of drift detected by HEFDD. Experimental results show that comparing to the default SRADL, the combined framework improves prediction performance when small amount of labeled samples is available. Finally, as machine learning applications are increasingly used in critical domains such as medical diagnostics, accountability, explainability and interpretability of machine learning algorithms needs to be considered. Explainable machine learning aims to use a white box approach for data analytics, which enables learning models to be explained and interpreted by human users. However, few studies have been done on explaining what has changed in a dynamic data stream environment. This dissertation thus presents Data Stream Explainability (DSE) framework. DSE visualizes changes in data distribution and model classification boundaries between chunks of streaming data. The visualizations can then be used by a data mining researcher to generate explanations of what has changed within the data stream. To show that DSE can help average users understand data stream mining better, a survey was conducted with an expert group and a non-expert group of users. Results show DSE can reduce the gap of understanding what changed in data stream mining between the two groups
    corecore