6,364 research outputs found

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    Security and Privacy Issues in Cloud Computing

    Full text link
    Cloud computing transforming the way of information technology (IT) for consuming and managing, promising improving cost efficiencies, accelerate innovations, faster time-to-market and the ability to scale applications on demand (Leighton, 2009). According to Gartner, while the hype grew ex-ponentially during 2008 and continued since, it is clear that there is a major shift towards the cloud computing model and that the benefits may be substantial (Gartner Hype-Cycle, 2012). However, as the shape of the cloud computing is emerging and developing rapidly both conceptually and in reality, the legal/contractual, economic, service quality, interoperability, security and privacy issues still pose significant challenges. In this chapter, we describe various service and deployment models of cloud computing and identify major challenges. In particular, we discuss three critical challenges: regulatory, security and privacy issues in cloud computing. Some solutions to mitigate these challenges are also proposed along with a brief presentation on the future trends in cloud computing deployment

    A vision for global privacy bridges: Technical and legal measures for international data markets

    Get PDF
    From the early days of the information economy, personal data has been its most valuable asset. Despite data protection laws and an acknowledged right to privacy, trading personal information has become a business equated with "trading oil". Most of this business is done without the knowledge and active informed consent of the people. But as data breaches and abuses are made public through the media, consumers react. They become irritated about companies' data handling practices, lose trust, exercise political pressure and start to protect their privacy with the help of technical tools. As a result, companies' Internet business models that are based on personal data are unsettled. An open conflict is arising between business demands for data and a desire for privacy. As of 2015 no true answer is in sight of how to resolve this conflict. Technologists, economists and regulators are struggling to develop technical solutions and policies that meet businesses' demand for more data while still maintaining privacy. Yet, most of the proposed solutions fail to account for market complexity and provide no pathway to technological and legal implementation. They lack a bigger vision for data use and privacy. To break this vicious cycle, we propose and test such a vision of a personal information market with privacy. We accumulate technical and legal measures that have been proposed by technical and legal scholars over the past two decades. And out of this existing knowledge, we compose something new: a four-space market model for personal data

    Privacy in the Smart City - Applications, Technologies, Challenges and Solutions

    Get PDF
    Many modern cities strive to integrate information technology into every aspect of city life to create so-called smart cities. Smart cities rely on a large number of application areas and technologies to realize complex interactions between citizens, third parties, and city departments. This overwhelming complexity is one reason why holistic privacy protection only rarely enters the picture. A lack of privacy can result in discrimination and social sorting, creating a fundamentally unequal society. To prevent this, we believe that a better understanding of smart cities and their privacy implications is needed. We therefore systematize the application areas, enabling technologies, privacy types, attackers and data sources for the attacks, giving structure to the fuzzy term “smart city”. Based on our taxonomies, we describe existing privacy-enhancing technologies, review the state of the art in real cities around the world, and discuss promising future research directions. Our survey can serve as a reference guide, contributing to the development of privacy-friendly smart cities

    Privacy in the Genomic Era

    Get PDF
    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward

    SPATA: Strong Pseudonym based AuthenTicAtion in Intelligent Transport System

    Get PDF
    Intelligent Transport System (ITS) is generally deployed to improve road safety, comfort, security, and traffic efficiency. A robust mechanism of authentication and secure communication is required to protect privacy and conditional resolution of pseudonyms to revoke malicious vehicles. In a typical ITS framework, a station can be a vehicle, Road Side Unit (RSU), or a server that can participate in communication. During authentication, the real identity of an Intelligent Transport System-Station (ITSS), referred to as a vehiclečň should not be revealed in order to preserve its privacy. In this paper, we propose a Strong Pseudonym based AutenTicAtion (SPATA) framework for preserving the real identity of vehicles. The distributed architecture of SPATA allows vehicles to generate pseudonyms in a very private and secure way. In the absence of a distributed architecture, the privacy cannot be preserved by storing information regarding vehicles in a single location. Therefore, the concept of linkability of certificates based on single authority is eliminated. This is done by keeping the real identity to pseudonym mappings distributed. Furthermore, the size of the Certificate Revocation List (CRL) is kept small, as only the most recent revoked communication pseudonyms are kept in the CRL. The privacy of the vehicle is preserved during the revocation and resolution phase through the distributed mechanism. Empirical results show that SPATA is a lightweight framework with low computational overhead, average latency, overhead ratio, and stable delivery ratio, in both sparse and dense network scenarios
    corecore