1,867 research outputs found

    Accommodating Transient Connectivity in Ad Hoc and Mobile Settings

    Get PDF
    Much of the work on networking and communications is based on thepremise that components interact in one of two ways: either they are connected viaa stable wired or wireless network, or they make use of persistent storage repositoriesaccessible to the communicating parties. A new generation of networks raises seri-ous questions about the validity of these fundamental assumptions. In mobile ad hocwireless networks connections are transient and availability of persistent storage is rare.This paper is concerned with achieving communication among mobile devices that maynever ļ¬nd themselves in direct or indirect contact with each other at any point in time.A unique feature of our contribution is the idea of exploiting information associatedwith the motion and availability proļ¬les of the devices making up the ad hoc network.This is the starting point for an investigation into a range of possible solutions whoseessential features are controlled by the manner in which motion proļ¬les are acquiredand the extent to which such knowledge is available across an ad hoc networ

    Open Workflows: Context-Dependent Construction and Execution in Mobile Wireless Settings

    Get PDF
    Existing workflow middleware executes tasks orchestrated by rules defined in a carefully handcrafted static graph. Workflow management systems have proved effective for service-oriented business automation in stable, wired infrastructures. We introduce a radically new paradigm for workflow construction and execution called open workflow to support goal-directed coordination among physically mobile people and devices that form a transient community over an ad hoc wireless network. The quintessential feature of the open workflow paradigm is dynamic construction and execution of custom, context-specific workflows in response to unpredictable and evolving circumstances by exploiting the knowledge and services available within a given spatiotemporal context. This work introduces the open workflow approach, surveys open research challenges in this promising new field, and presents algorithmic, architectural, and evaluation results for the first practical realization of an open workflow management system

    Achieving Coordination Through Dynamic Construction of Open Workflows

    Get PDF
    Workflow middleware executes tasks orchestrated by rules defined in a carefully handcrafted static graph. Workflow management systems have proved effective for service-oriented business automation in stable, wired infrastructures. We introduce a radically new paradigm for workflow construction and execution called open workflow to support goal-directed coordination among physically mobile people and devices that form a transient community over an ad hoc wireless network. The quintessential feature of the open workflow paradigm is dynamic construction of custom, context-specific workflows in response to unpredictable and evolving circumstances by exploiting the knowledge and services available within a given spatiotemporal context. This paper introduces the open workflow approach, surveys open research challenges in this promising new field, and presents algorithmic, architectural, and evaluation results for the first practical realization of an open workflow management system

    Achieving Coordination Through Dynamic Construction of Open Workflows ** PLEASE SEE WUCSE-2009-14 **

    Get PDF
    Workflows, widely used on the Internet today, typically consist of a graph-like structure that defines the orchestration rules for executing a set of tasks, each of which is matched at run-rime to a corresponding service. The graph is static, specialized directories enable the discovery of services, and the wired infrastructure supports routing of results among tasks. In this paper we introduce a radically new paradigm for workflow construction and execution called open workflow. It is motivated by the growing reliance on wireless ad hoc networks in settings such as emergency response, field hospitals, and military operations. Open workflows facilitate goal-directed coordination among physically mobile agents (people and host devices) that form a transient community over an ad hoc wireless network. The quintessential feature of the open workflow paradigm is the ability to construct a custom context-specific workflow specification on the fly in response to unpredictable and evolving circumstances by exploiting the knowhow and services available within a given spatiotemporal context. This paper introduces the open workflow approach and explores the technical challenges (algorithms and architecture) associated with its first practical realization

    Towards Predictable Service Provision in Mobile Ad Hoc Networks

    Get PDF
    This paper considers the technical challenges associated with the development of applications designed to work over mobile ad hoc net-works (MANETs). The setting is one in which a miniature application core residing on a mobile host with limited resources is able to support a complex application in a changing open environment by exploiting ser-vices made available by other hosts it encounters. The proposed solution extends in a novel way the applicability of the service provision paradigm to the ad hoc wireless setting. The novelty of the approach rests with the accumulation and management of knowledge about the service structure and the mobility of hosts to ensure a degree of predictability during the service exploitation process

    LIME: A Coordination Middleware Supporting Mobility of Agents and Hosts

    Get PDF
    LIME (Linda in a Mobile Environment) is a middleware supporting the development of applications that exhibit physical mobility of hosts, logical mobility of agents, or both. LIME adopts a coordination perspective inspired by work on the Linda model. The context for computation, represented in Linda by a globally accessible, persistent tuple space, is reļ¬ned in LIME to transient sharing of identically-named tuple spaces carried by individual mobile units. Tuple spaces are also extended with a notion of location and programs are given the ability to react to speciļ¬ed states. The resulting model provides a minimalist set of abstractions that promise to facilitate rapid and dependable development of mobile applications. In this paper, we illustrate the model underlying LIME, provide a formal semantic characterization for the operations it makes available to the application developer, present its current design and implementation, and discuss lessons learned in developing applications that involve physical mobility

    Context Aware Service Oriented Computing in Mobile Ad Hoc Networks

    Get PDF
    These days we witness a major shift towards small, mobile devices, capable of wireless communication. Their communication capabilities enable them to form mobile ad hoc networks and share resources and capabilities. Service Oriented Computing (SOC) is a new emerging paradigm for distributed computing that has evolved from object-oriented and component-oriented computing to enable applications distributed within and across organizational boundaries. Services are autonomous computational elements that can be described, published, discovered, and orchestrated for the purpose of developing applications. The application of the SOC model to mobile devices provides a loosely coupled model for distributed processing in a resource-poor and highly dynamic environment. Cooperation in a mobile ad hoc environment depends on the fundamental capability of hosts to communicate with each other. Peer-to-peer interactions among hosts within communication range allow such interactions but limit the scope of interactions to a local region. Routing algorithms for mobile ad hoc networks extend the scope of interactions to cover all hosts transitively connected over multi-hop routes. Additional contextual information, e.g., knowledge about the movement of hosts in physical space, can help extend the boundaries of interactions beyond the limits of an island of connectivity. To help separate concerns specific to different layers, a coordination model between the routing layer and the SOC layer provides abstractions that mask the details characteristic to the network layer from the distributed computing semantics above. This thesis explores some of the opportunities and challenges raised by applying the SOC paradigm to mobile computing in ad hoc networks. It investigates the implications of disconnections on service advertising and discovery mechanisms. It addresses issues related to code migration in addition to physical host movement. It also investigates some of the security concerns in ad hoc networking service provision. It presents a novel routing algorithm for mobile ad hoc networks and a novel coordination model that addresses space and time explicitly

    Distributed Allocation of Workflow Tasks in MANETs

    Get PDF
    When multiple participants work on a workflow that represents a large, collaborative activity, it is important to have a well defined process to determine the portions of the workflow that each participant is responsible for executing. In this paper, we describe a process and related algorithms required to assign tasks in a workflow, to hosts that are willing to carry out the execution of these tasks, and thereby contributing to the completion of the activity. This problem is a stylized form of the multi-processor scheduling algorithm which has been shown to be NP-Hard. Further complicating the issue is that we are targeting our approach to mobile ad hoc networks, where hosts are physically mobile, communication links are frequently interrupted, and spatiotemporal considerations become increasingly important. We describe a distributed approach to task allocation in mobile ad hoc networks that employs heuristics to assign tasks in a workflow to mobile hosts based on their capabilities and their mobility patterns. We have implemented our algorithms in the context of CiAN, a workflow management system (WfMS) supporting collaborations in a mobile environment. In addition, we also present performance data of our algorithm and compare it to naive and brute force approaches

    Towards efficacy and efficiency in sparse delay tolerant networks

    Get PDF
    The ubiquitous adoption of portable smart devices has enabled a new way of communication via Delay Tolerant Networks (DTNs), whereby messages are routed by the personal devices carried by ever-moving people. Although a DTN is a type of Mobile Ad Hoc Network (MANET), traditional MANET solutions are ill-equipped to accommodate message delivery in DTNs due to the dynamic and unpredictable nature of people\u27s movements and their spatio-temporal sparsity. More so, such DTNs are susceptible to catastrophic congestion and are inherently chaotic and arduous. This manuscript proposes approaches to handle message delivery in notably sparse DTNs. First, the ChitChat system [69] employs the social interests of individuals participating in a DTN to accurately model multi-hop relationships and to make opportunistic routing decisions for interest-annotated messages. Second, the ChitChat system is hybridized [70] to consider both social context and geographic information for learning the social semantics of locations so as to identify worthwhile routing opportunities to destinations and areas of interest. Network density analyses of five real-world datasets is conducted to identify sparse datasets on which to conduct simulations, finding that commonly-used datasets in past DTN research are notably dense and well connected, and suggests two rarely used datasets are appropriate for research into sparse DTNs. Finally, the Catora system is proposed to address congestive-driven degradation of service in DTNs by accomplishing two simultaneous tasks: (i) expedite the delivery of higher quality messages by uniquely ordering messages for transfer and delivery, and (ii) avoid congestion through strategic buffer management and message removal. Through dataset-driven simulations, these systems are found to outperform the state-of-the-art, with ChitChat facilitating delivery in sparse DTNs and Catora unencumbered by congestive conditions --Abstract, page iv
    • ā€¦
    corecore