797 research outputs found

    Improved IEEE 802.11 point coordination function considering fiber-delay difference in distributed antenna systems

    Get PDF
    In this paper, we present an improved IEEE 802.11 wireless local-area network (WLAN) medium access control (MAC) mechanism for simulcast radio-over-fiber-based distributed antenna systems where multiple remote antenna units (RAUs) are connected to one access point (AP). In the improved mechanism, the fiber delay between RAUs and central unit is taken into account in a modification to the conventional point coordination function (PCF) that achieves coordination by a centralized algorithm. Simulation results show that the improved PCF outperforms the distributed coordination function (DCF) in both the basic-access and request/clear-to-send modes in terms of the total throughput and the fairness among RAU

    Adaptive medium access control for VoIP services in IEEE 802.11 WLANs

    Get PDF
    Abstract- Voice over Internet Protocol (VoIP) is an important service with strict Quality-of-Service (QoS) requirements in Wireless Local Area Networks (WLANs). The popular Distributed Coordination Function (DCF) of IEEE 802.11 Medium Access Control (MAC) protocol adopts a Binary Exponential Back-off (BEB) procedure to reduce the packet collision probability in WLANs. In DCF, the size of contention window is doubled upon a collision regardless of the network loads. This paper presents an adaptive MAC scheme to improve the QoS of VoIP in WLANs. This scheme applies a threshold of the collision rate to switch between two different functions for increasing the size of contention window based on the status of network loads. The performance of this scheme is investigated and compared to the original DCF using the network simulator NS-2. The performance results reveal that the adaptive scheme is able to achieve the higher throughput and medium utilization as well as lower access delay and packet loss probability than the original DCF

    Decentralised Learning MACs for Collision-free Access in WLANs

    Get PDF
    By combining the features of CSMA and TDMA, fully decentralised WLAN MAC schemes have recently been proposed that converge to collision-free schedules. In this paper we describe a MAC with optimal long-run throughput that is almost decentralised. We then design two \changed{schemes} that are practically realisable, decentralised approximations of this optimal scheme and operate with different amounts of sensing information. We achieve this by (1) introducing learning algorithms that can substantially speed up convergence to collision free operation; (2) developing a decentralised schedule length adaptation scheme that provides long-run fair (uniform) access to the medium while maintaining collision-free access for arbitrary numbers of stations

    Saturation Throughput Analysis of IEEE 802.11 in Presence of Non Ideal Transmission Channel and Capture Effects

    Full text link
    In this paper, we provide a saturation throughput analysis of the IEEE 802.11 protocol at the data link layer by including the impact of both transmission channel and capture effects in Rayleigh fading environment. Impacts of both non-ideal channel and capture effects, specially in an environment of high interference, become important in terms of the actual observed throughput. As far as the 4-way handshaking mechanism is concerned, we extend the multi-dimensional Markovian state transition model characterizing the behavior at the MAC layer by including transmission states that account for packet transmission failures due to errors caused by propagation through the channel. This way, any channel model characterizing the physical transmission medium can be accommodated, including AWGN and fading channels. We also extend the Markov model in order to consider the behavior of the contention window when employing the basic 2-way handshaking mechanism. Under the usual assumptions regarding the traffic generated per node and independence of packet collisions, we solve for the stationary probabilities of the Markov chain and develop expressions for the saturation throughput as a function of the number of terminals, packet sizes, raw channel error rates, capture probability, and other key system parameters. The theoretical derivations are then compared to simulation results confirming the effectiveness of the proposed models.Comment: To appear on IEEE Transactions on Communications, 200

    Spectrum Utilization and Congestion of IEEE 802.11 Networks in the 2.4 GHz ISM Band

    Get PDF
    Wi-Fi technology, plays a major role in society thanks to its widespread availability, ease of use and low cost. To assure its long term viability in terms of capacity and ability to share the spectrum efficiently, it is of paramount to study the spectrum utilization and congestion mechanisms in live environments. In this paper the service level in the 2.4 GHz ISM band is investigated with focus on todays IEEE 802.11 WLAN systems with support for the 802.11e extension. Here service level means the overall Quality of Service (QoS), i.e. can all devices fulfill their communication needs? A crosslayer approach is used, since the service level can be measured at several levels of the protocol stack. The focus is on monitoring at both the Physical (PHY) and the Medium Access Control (MAC) link layer simultaneously by performing respectively power measurements with a spectrum analyzer to assess spectrum utilization and packet sniffing to measure the congestion. Compared to traditional QoS analysis in 802.11 networks, packet sniffing allows to study the occurring congestion mechanisms more thoroughly. The monitoring is applied for the following two cases. First the influence of interference between WLAN networks sharing the same radio channel is investigated in a controlled environment. It turns out that retry rate, Clear-ToSend (CTS), Request-To-Send (RTS) and (Block) Acknowledgment (ACK) frames can be used to identify congestion, whereas the spectrum analyzer is employed to identify the source of interference. Secondly, live measurements are performed at three locations to identify this type of interference in real-live situations. Results show inefficient use of the wireless medium in certain scenarios, due to a large portion of management and control frames compared to data content frames (i.e. only 21% of the frames is identified as data frames)

    Unsaturated Throughput Analysis of IEEE 802.11 in Presence of Non Ideal Transmission Channel and Capture Effects

    Full text link
    In this paper, we provide a throughput analysis of the IEEE 802.11 protocol at the data link layer in non-saturated traffic conditions taking into account the impact of both transmission channel and capture effects in Rayleigh fading environment. The impact of both non-ideal channel and capture become important in terms of the actual observed throughput in typical network conditions whereby traffic is mainly unsaturated, especially in an environment of high interference. We extend the multi-dimensional Markovian state transition model characterizing the behavior at the MAC layer by including transmission states that account for packet transmission failures due to errors caused by propagation through the channel, along with a state characterizing the system when there are no packets to be transmitted in the buffer of a station. Finally, we derive a linear model of the throughput along with its interval of validity. Simulation results closely match the theoretical derivations confirming the effectiveness of the proposed model.Comment: To appear on IEEE Transactions on Wireless Communications, 200
    corecore