7,160 research outputs found

    HiTrust: building cross-organizational trust relationship based on a hybrid negotiation tree

    Get PDF
    Small-world phenomena have been observed in existing peer-to-peer (P2P) networks which has proved useful in the design of P2P file-sharing systems. Most studies of constructing small world behaviours on P2P are based on the concept of clustering peer nodes into groups, communities, or clusters. However, managing additional multilayer topology increases maintenance overhead, especially in highly dynamic environments. In this paper, we present Social-like P2P systems (Social-P2Ps) for object discovery by self-managing P2P topology with human tactics in social networks. In Social-P2Ps, queries are routed intelligently even with limited cached knowledge and node connections. Unlike community-based P2P file-sharing systems, we do not intend to create and maintain peer groups or communities consciously. In contrast, each node connects to other peer nodes with the same interests spontaneously by the result of daily searches

    Dynamic deployment of web services on the internet or grid

    Get PDF
    PhD ThesisThis thesis focuses on the area of dynamic Web Service deployment for grid and Internet applications. It presents a new Dynamic Service Oriented Architecture (DynaSOAr) that enables the deployment of Web Services at run-time in response to consumer requests. The service-oriented approach to grid and Internet computing is centred on two parties: the service provider and the service consumer. This thesis investigates the introduction of mobility into this service-oriented approach allowing for better use of resources and improved quality of service. To this end, it examines the role of the service provider and makes the case for a clear separation of its concerns into two distinct roles: that of a Web Service Provider, whose responsibility is to receive and direct consumer requests and supply service implementations, and a Host Provider, whose role is to deploy services and process consumers' requests on available resources. This separation of concerns breaks the implicit bond between a published Web Service endpoint (network address) and the resource upon which the service is deployed. It also allows the architecture to respond dynamically to changes in service demand and the quality of service requirements. Clearly defined interfaces for each role are presented, which form the infrastructure of DynaSOAr. The approach taken is wholly based on Web Services. The dynamic deployment of service code between separate roles, potentially running in different administrative domains, raises a number of security issues which are addressed. A DynaSOAr service invocation involves three parties: the requesting Consumer, a Web Service Provider and a Host Provider; this tripartite relationship requires a security model that allows the concerns of each party to be enforced for a given invocation. This thesis, therefore, presents a Tripartite Security Model and an architecture that allows the representation, propagation and enforcement of three separate sets of constraints. A prototype implementation of DynaSOAr is used to evaluate the claims made, and the results show that a significant benefit in terms of round-trip execution time for data-intensive applications is achieved. Additional benefits in terms of parallel deployments to satisfy multiple concurrent requests are also shown

    De-ossifying the Internet Transport Layer : A Survey and Future Perspectives

    Get PDF
    ACKNOWLEDGMENT The authors would like to thank the anonymous reviewers for their useful suggestions and comments.Peer reviewedPublisher PD

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    Active yellow pages: a pipelined resource management architecture for wide-area network computing

    Get PDF
    This paper describes a novel, pipelined resource management architecture for computational grids. The design is based on two key realizations. One is that resource management involves a sequence of tasks that is best handled by a pipeline. As shown in the paper, this approach results, in a scalable architecture for decentralized scheduling. The other realization is that static aggregation of resources for improved scheduling is inadequate in wide-area computing environments because the needs of users and jobs change with both, location and time. The described architecture addresses this problem by dynamically aggregating resources in a manner that continuously optimizes system response. This is accomplished by way of an active yellow pages directory that allows aggregation constraints to be (re)defined on the fly. An initial prototype of the active yellow pages service has been deployed in the PUNCH network computing environment. Experiences with the production PUNCH system and preliminary results from controlled experiments indicate that the active yellow pages service performs well.Peer Reviewe

    Agent-Based Cloud Resource Management for Secure Cloud Infrastructures

    Get PDF
    The cloud offers clear benefits for computations as well as for storage for diverse application areas. Security concerns are by far the greatest barriers to the wider uptake of cloud computing, particularly for privacy-sensitive applications. The aim of this article is to propose an approach for establishing trust between users and providers of cloud infrastructures (IaaS model) based on certified trusted agents. Such approach would remove barriers that prevent security sensitive applications being moved to the cloud. The core technology encompasses a secure agent platform for providing the execution environment for agents and the secure attested software base which ensures the integrity of the host platform. In this article we describe the motivation, concept, design and initial implementation of these technologies
    • …
    corecore