675 research outputs found

    Misconfiguration in Firewalls and Network Access Controls: Literature Review

    Get PDF
    Firewalls and network access controls play important roles in security control and protection. Those firewalls may create an incorrect sense or state of protection if they are improperly configured. One of the major configuration problems in firewalls is related to misconfiguration in the access control roles added to the firewall that will control network traffic. In this paper, we evaluated recent research trends and open challenges related to firewalls and access controls in general and misconfiguration problems in particular. With the recent advances in next-generation (NG) firewalls, firewall roles can be auto-generated based on networks and threats. Nonetheless, and due to the large number of roles in any medium to large networks, roles’ misconfiguration may occur for several reasons and will impact the performance of the firewall and overall network and protection efficiency

    {SoK}: {An} Analysis of Protocol Design: Avoiding Traps for Implementation and Deployment

    No full text
    Today's Internet utilizes a multitude of different protocols. While some of these protocols were first implemented and used and later documented, other were first specified and then implemented. Regardless of how protocols came to be, their definitions can contain traps that lead to insecure implementations or deployments. A classical example is insufficiently strict authentication requirements in a protocol specification. The resulting Misconfigurations, i.e., not enabling strong authentication, are common root causes for Internet security incidents. Indeed, Internet protocols have been commonly designed without security in mind which leads to a multitude of misconfiguration traps. While this is slowly changing, to strict security considerations can have a similarly bad effect. Due to complex implementations and insufficient documentation, security features may remain unused, leaving deployments vulnerable. In this paper we provide a systematization of the security traps found in common Internet protocols. By separating protocols in four classes we identify major factors that lead to common security traps. These insights together with observations about end-user centric usability and security by default are then used to derive recommendations for improving existing and designing new protocols---without such security sensitive traps for operators, implementors and users

    A log mining approach for process monitoring in SCADA

    Get PDF
    SCADA (Supervisory Control and Data Acquisition) systems are used for controlling and monitoring industrial processes. We propose a methodology to systematically identify potential process-related threats in SCADA. Process-related threats take place when an attacker gains user access rights and performs actions, which look legitimate, but which are intended to disrupt the SCADA process. To detect such threats, we propose a semi-automated approach of log processing. We conduct experiments on a real-life water treatment facility. A preliminary case study suggests that our approach is effective in detecting anomalous events that might alter the regular process workflow

    {SoK}: {An} Analysis of Protocol Design: Avoiding Traps for Implementation and Deployment

    No full text
    Today's Internet utilizes a multitude of different protocols. While some of these protocols were first implemented and used and later documented, other were first specified and then implemented. Regardless of how protocols came to be, their definitions can contain traps that lead to insecure implementations or deployments. A classical example is insufficiently strict authentication requirements in a protocol specification. The resulting Misconfigurations, i.e., not enabling strong authentication, are common root causes for Internet security incidents. Indeed, Internet protocols have been commonly designed without security in mind which leads to a multitude of misconfiguration traps. While this is slowly changing, to strict security considerations can have a similarly bad effect. Due to complex implementations and insufficient documentation, security features may remain unused, leaving deployments vulnerable. In this paper we provide a systematization of the security traps found in common Internet protocols. By separating protocols in four classes we identify major factors that lead to common security traps. These insights together with observations about end-user centric usability and security by default are then used to derive recommendations for improving existing and designing new protocols---without such security sensitive traps for operators, implementors and users

    The Australian Cyber Security Centre threat report 2015

    Get PDF
    Introduction: The number, type and sophistication of cyber security threats to Australia and Australians are increasing. Due to the varied nature of motivations for cyber adversaries targeting Australian organisations, organisations could be a target for malicious activities even if they do not think the information held on their networks is valuable, or that their business would be of interest to cyber adversaries. This first unclassified report by the ACSC describes the range of cyber adversaries targeting Australian networks, explains their motivations, the malicious activities they are conducting and their impact, and provides specific examples of activity targeting Australian networks during 2014. This report also offers mitigation advice on how organisations can defend against these activities. The ACSC’s ability to detect and defend against sophisticated cyber threats continues to improve. But cyber adversaries are constantly improving their tradecraft in their attempts to defeat our network defences and exploit the new technologies we embrace. There are gaps in our understanding of the extent and nature of malicious activity, particularly against the business sector. The ACSC is reaching out to industry to build partnerships to improve our collective understanding. Future iterations of the Threat Report will benefit from these partnerships and help to close gaps in our knowledge

    Towards securing SCADA systems against process-related threats

    Get PDF
    We propose a tool-assisted approach to address process-related threats on SCADA systems. Process-related threats have not been addressed before in a systematic manner. Our approach consists of two steps: threat analysis and threat\ud mitigation. For the threat analysis, we combine two methodologies (PHEA and HAZOP) to systematically identify process-related threats. The threat mitigation is supported by our tool, MELISSA, that helps to detect incidents (attacks or user mistakes). MELISSA uses SCADA system logs and visualization techniques to highlight potential incidents. A preliminary case study suggests that our approach is effective in detecting anomalous events that might alter the regular SCADA process work-flow

    A Macroscopic Study of Network Security Threats at the Organizational Level.

    Full text link
    Defenders of today's network are confronted with a large number of malicious activities such as spam, malware, and denial-of-service attacks. Although many studies have been performed on how to mitigate security threats, the interaction between attackers and defenders is like a game of Whac-a-Mole, in which the security community is chasing after attackers rather than helping defenders to build systematic defensive solutions. As a complement to these studies that focus on attackers or end hosts, this thesis studies security threats from the perspective of the organization, the central authority that manages and defends a group of end hosts. This perspective provides a balanced position to understand security problems and to deploy and evaluate defensive solutions. This thesis explores how a macroscopic view of network security from an organization's perspective can be formed to help measure, understand, and mitigate security threats. To realize this goal, we bring together a broad collection of reputation blacklists. We first measure the properties of the malicious sources identified by these blacklists and their impact on an organization. We then aggregate the malicious sources to Internet organizations and characterize the maliciousness of organizations and their evolution over a period of two and half years. Next, we aim to understand the cause of different maliciousness levels in different organizations. By examining the relationship between eight security mismanagement symptoms and the maliciousness of organizations, we find a strong positive correlation between mismanagement and maliciousness. Lastly, motivated by the observation that there are organizations that have a significant fraction of their IP addresses involved in malicious activities, we evaluate the tradeoff of one type of mitigation solution at the organization level --- network takedowns.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116714/1/jingzj_1.pd

    Data Loss Prevention Management and Control: Inside Activity Incident Monitoring, Identification, and Tracking in Healthcare Enterprise Environments

    Get PDF
    As healthcare data are pushed online, consumers have raised big concerns on the breach of their personal information. Law and regulations have placed businesses and public organizations under obligations to take actions to prevent data breach. Among various threats, insider threats have been identified to be a major threat on data loss. Thus, effective mechanisms to control insider threats on data loss are urgently needed. The objective of this research is to address data loss prevention challenges in healthcare enterprise environment. First, a novel approach is provided to model internal threat, specifically inside activities. With inside activities modeling, data loss paths and threat vectors are formally described and identified. Then, threat vectors and potential data loss paths have been investigated in a healthcare enterprise environment. Threat vectors have been enumerated and data loss statistics data for some threat vectors have been collected. After that, issues on data loss prevention and inside activity incident identification, tracking, and reconstruction are discussed. Finally, evidences of inside activities are modeled as evidence trees to provide guidance for inside activity identification and reconstruction
    corecore