14 research outputs found

    Identifying Users with Wearable Sensors based on Activity Patterns

    Get PDF
    We live in a world where ubiquitous systems surround us in the form of automated homes, smart appliances and wearable devices. These ubiquitous systems not only enhance productivity but can also provide assistance given a variety of different scenarios. However, these systems are vulnerable to the risk of unauthorized access, hence the ability to authenticate the end-user seamlessly and securely is important. This paper presents an approach for user identification given the physical activity patterns captured using on-body wearable sensors, such as accelerometer, gyroscope, and magnetometer. Three machine learning classifiers have been used to discover the activity patterns of users given the data captured from wearable sensors. The recognition results prove that the proposed scheme can effectively recognize a user’s identity based on his/her daily living physical activity patterns

    Edge-centric multimodal authentication system using encrypted biometric templates

    Get PDF
    Data security, complete system control, and missed storage and computing opportunities in personal portable devices are some of the major limitations of the centralized cloud environment. Among these limitations, security is a prime concern due to potential unauthorized access to private data. Biometrics, in particular, is considered sensitive data, and its usage is subject to the privacy protection law. To address this issue, a multimodal authentication system using encrypted biometrics for the edge-centric cloud environment is proposed in this study. Personal portable devices are utilized for encrypting biometrics in the proposed system, which optimizes the use of resources and tackles another limitation of the cloud environment. Biometrics is encrypted using a new method. In the proposed system, the edges transmit the encrypted speech and face for processing in the cloud. The cloud then decrypts the biometrics and performs authentication to confirm the identity of an individual. The model for speech authentication is based on two types of features, namely, Mel-frequency cepstral coefficients and perceptual linear prediction coefficients. The model for face authentication is implemented by determining the eigenfaces. The final decision about the identity of a user is based on majority voting. Experimental results show that the new encryption method can reliably hide the identity of an individual and accurately decrypt the biometrics, which is vital for errorless authentication

    Signal enhancement and efficient DTW-based comparison for wearable gait recognition

    Get PDF
    The popularity of biometrics-based user identification has significantly increased over the last few years. User identification based on the face, fingerprints, and iris, usually achieves very high accuracy only in controlled setups and can be vulnerable to presentation attacks, spoofing, and forgeries. To overcome these issues, this work proposes a novel strategy based on a relatively less explored biometric trait, i.e., gait, collected by a smartphone accelerometer, which can be more robust to the attacks mentioned above. According to the wearable sensor-based gait recognition state-of-the-art, two main classes of approaches exist: 1) those based on machine and deep learning; 2) those exploiting hand-crafted features. While the former approaches can reach a higher accuracy, they suffer from problems like, e.g., performing poorly outside the training data, i.e., lack of generalizability. This paper proposes an algorithm based on hand-crafted features for gait recognition that can outperform the existing machine and deep learning approaches. It leverages a modified Majority Voting scheme applied to Fast Window Dynamic Time Warping, a modified version of the Dynamic Time Warping (DTW) algorithm with relaxed constraints and majority voting, to recognize gait patterns. We tested our approach named MV-FWDTW on the ZJU-gaitacc, one of the most extensive datasets for the number of subjects, but especially for the number of walks per subject and walk lengths. Results set a new state-of-the-art gait recognition rate of 98.82% in a cross-session experimental setup. We also confirm the quality of the proposed method using a subset of the OU-ISIR dataset, another large state-of-the-art benchmark with more subjects but much shorter walk signals

    Accelerometer-Based Key Generation and Distribution Method for Wearable IoT Devices

    Get PDF

    Machine Learning Models for Network Intrusion Detection and Authentication of Smart Phone Users

    Get PDF
    A thesis presented to the faculty of the Elmer R. Smith College of Business and Technology at Morehead State University in partial fulfillment of the requirements for the Degree of Master of Science by S. Sareh Ahmadi on November 18, 2019

    Gait analysis of smart phones with the help of the accelerometer sensor

    Get PDF
    Spor alanlarında insan hareketlerini ölçme yeteneği performans ölçüm ve gelişimi için önemli konular arasındadır. Bu durum aynı zamanda klinik değerlendirmelerin de önemli bir parçasıdır. Özellikle elektromanyetik sistemler insan hareketlerini değerlendirmek için en yaygın kullanılan yöntemler arasında yer alır. Buradaki çalışmada 100 metre uzunluğunda bir koridorda 50 farklı kişinin yürüme verileri kullanılmıştır. Yürüme verileri akıllı telefon için geliştirilen bir yazılım ile ivmeölçer sensöründen elde edilmiştir. Verilere üç boyutlu Local Binary Pattern (LBP) yöntemi uygulanmış ve toplam 768 öznitelik çıkarılmıştır. Farklı sınıflandırma algoritmaları ile testler yapılmış ve Subspace KNN ile %97,2 başarılı sınıflandırma elde edilmiştir. Cinsiyete göre yapılan sınıflandırmada ise %99,7 başarılı sınıflandırma elde edilmiştir. Bu yöntem ile yürüme bozukluğu tespitinde yüksek maliyetli cihazlar yerine daha ekonomik yöntemler geliştirileceği düşünülmektedir.The ability to measure human movements in sports fields is among the important issues for performance measurement and development. This instance is also an important part of clinical evaluations. Electromagnetic systems are among the most widely used methods to evaluate human movements. In this study, walking data of 50 different people were used in a 100-meter-long corridor. The walking dataset was obtained from the accelerometer sensor with a software developed for the smartphone. Three-dimensional Local Binary Pattern (LBP) method was applied to the dataset and a total of 768 features were generated. Datasets were made with different classification algorithms and 97.2% successful classification was achieved with Subspace KNN. In the classification according to gender, 99.7% successful classification was obtained. With this method, it is thought that more economical methods will be developed instead of high-cost devices in detecting gait disorders
    corecore