3 research outputs found

    Energy-Performance Scalability Analysis of a Novel Quasi-Stochastic Computing Approach

    Get PDF
    Stochastic computing (SC) is an emerging low-cost computation paradigm for efficient approximation. It processes data in forms of probabilities and offers excellent progressive accuracy. Since SC\u27s accuracy heavily depends on the stochastic bitstream length, generating acceptable approximate results while minimizing the bitstream length is one of the major challenges in SC, as energy consumption tends to linearly increase with bitstream length. To address this issue, a novel energy-performance scalable approach based on quasi-stochastic number generators is proposed and validated in this work. Compared to conventional approaches, the proposed methodology utilizes a novel algorithm to estimate the computation time based on the accuracy. The proposed methodology is tested and verified on a stochastic edge detection circuit to showcase its viability. Results prove that the proposed approach offers a 12—60% reduction in execution time and a 12—78% decrease in the energy consumption relative to the conventional counterpart. This excellent scalability between energy and performance could be potentially beneficial to certain application domains such as image processing and machine learning, where power and time-efficient approximation is desired

    Energy-Efficient FPGA-Based Parallel Quasi-Stochastic Computing

    Get PDF
    The high performance of FPGA (Field Programmable Gate Array) in image processing applications is justified by its flexible reconfigurability, its inherent parallel nature and the availability of a large amount of internal memories. Lately, the Stochastic Computing (SC) paradigm has been found to be significantly advantageous in certain application domains including image processing because of its lower hardware complexity and power consumption. However, its viability is deemed to be limited due to its serial bitstream processing and excessive run-time requirement for convergence. To address these issues, a novel approach is proposed in this work where an energy-efficient implementation of SC is accomplished by introducing fast-converging Quasi-Stochastic Number Generators (QSNGs) and parallel stochastic bitstream processing, which are well suited to leverage FPGA\u27s reconfigurability and abundant internal memory resources. The proposed approach has been tested on the Virtex-4 FPGA, and results have been compared with the serial and parallel implementations of conventional stochastic computation using the well-known SC edge detection and multiplication circuits. Results prove that by using this approach, execution time, as well as the power consumption are decreased by a factor of 3.5 and 4.5 for the edge detection circuit and multiplication circuit, respectively

    Novel approaches for efficient stochastic computing

    Get PDF
    This thesis is comprised of two papers, where the first paper presents a novel approach for parallel implementation of SC using FPGA (Field Programmable Gate Array). This paper makes use of the distributed memory elements of FPGAs (i.e., look-up-tables -LUTs) to achieve this. An attempt has been made to build the stochastic number generators (SNGs) by using the proposed LUT approach. The construction of these SNGs has been influenced by the Quasi-random number sequences, which provide the advantage of reducing the random fluctuations present in the pseudo-random number generators such as LFSR (Linear Feedback Shift Register) as well as the execution time by faster convergence. The results prove that the throughput of the system increases and the execution time is reduced by adopting the proposed technique. The second paper of the thesis proposes a novel technique referred to as the approximate stochastic computing (ASC) approach focusing on image processing applications to reduce the lengthy computation time of SC with a trade-off in accuracy. The proposed technique is to truncate low-order bits of the image pixel values for SC for faster operation, which also causes an error in the binary to stochastic converted value. Attempts have been made to reduce this error by linearly increasing the clock cycles rather than exponentially. Experimental results from the well-known SC edge detection circuit indicate that the proposed technique is a promising approach for efficient approximate stochastic image processing --Abstract, page iv
    corecore