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Abstract: The high performance of FPGA (Field Programmable Gate Array) in image processing
applications is justified by its flexible reconfigurability, its inherent parallel nature and the availability
of a large amount of internal memories. Lately, the Stochastic Computing (SC) paradigm has been
found to be significantly advantageous in certain application domains including image processing
because of its lower hardware complexity and power consumption. However, its viability is deemed
to be limited due to its serial bitstream processing and excessive run-time requirement for convergence.
To address these issues, a novel approach is proposed in this work where an energy-efficient
implementation of SC is accomplished by introducing fast-converging Quasi-Stochastic Number
Generators (QSNGs) and parallel stochastic bitstream processing, which are well suited to leverage
FPGA’s reconfigurability and abundant internal memory resources. the proposed approach has
been tested on the Virtex-4 FPGA, and results have been compared with the serial and parallel
implementations of conventional stochastic computation using the well-known SC edge detection
and multiplication circuits. Results prove that by using this approach, execution time, as well
as the power consumption are decreased by a factor of 3.5 and 4.5 for the edge detection circuit
and multiplication circuit, respectively.

Keywords: stochastic computing; FPGA; edge detection; quasi-stochastic number generator;
reconfigurability

1. Introduction

Stochastic Computing (SC) is an alternative computing style, which has recently proven to be
advantageous in image processing applications, because of its potential area and power benefits
compared to binary implementations. the performance benefits of the parallel implementation of a
stochastic circuit using FPGAs for an image processing application has not been analyzed in the prior
literature. Taking advantage of the parallel implementation of stochastic circuits is possible by using
the distributed memory elements of FPGAs. New Stochastic Number Generators (SNGs) are designed
to utilize quasi-random numbers, making use of the distributed memory elements in this paper. While
it is possible to use Linear Feedback Shift Registers (LFSRs) as random number generators in SNGs,
making use of Low-Discrepancy Sequences (LDS) or quasi-random numbers is advantageous, because
they do not suffer from random fluctuations and converge faster [1]. Though the design alternative
selected here is certainly not new [2], this paper mainly focuses on the possibility of parallel stochastic
computation for image processing applications using FPGAs. the main contributions of this paper are
as follows:

1. Reduction of the random fluctuation errors present in the traditional pseudo-random numbers
by adopting a new way of constructing SNGs by using the Look-Up Table (LUT)-based approach
and Low-Discrepancy (LD) sub-random sequences.
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2. Reduction in the power consumed as compared to a conventional SC and a successful parallel
implementation to decrease the execution time.

2. Background

SC has its roots in the 1960s, and it is used for probability representation using digital bit
streams [3,4]. SC has been successfully applied to many applications like image processing, neural
networks, LDPCcodes, factor graphs, fault-tree analysis and in filters [5–10]. However, the extensive
use of stochastic computation is still limited, because of its long run-time and inaccuracy. Recent
improvements have mainly focused on improving the accuracy and performance of the stochastic
circuits by sharing consecutive bit streams, sharing the stochastic number generators, using true
random generators, exploiting the correlation and using the spectral transform approach for
stochastic circuit synthesis [11–17]. This paper also explores new methods to improve the accuracy
and performance of stochastic circuits. Figure 1 shows the basic SC circuits. the function implemented
by these circuits varies with the number interpretations, i.e., unipolar, bipolar or inverted bipolar
(UP, BP, IBP), where unipolar format is used to represent real number x in the range of [0, 1], bipolar
is used to represent real number x between [−1, 1] and IBP is the inverted bipolar format, which is
an inversion of BP ranging from [−1, 1], where the Boolean values zero and one in the Stochastic
Number (SN) represent one and −1, respectively, rather than −1 and one in the case of the BP format.
One can refer to [13] for more details on different SN formats.

Figure 1. Basic circuits used in stochastic computation [18]. UP, unipolar; BP, bipolar.

In SC, a probability value is represented by a binary bit stream of zeroes and ones with specific
length L. To represent a probability value of 0.5, half of the bits in the bit stream of length L
are represented by ones. For example, if 0.5 is to be represented by a bit stream of 10 bits, then
the 0101010101 bit stream is one way of representing it. the representation of a probability value
in SC is not unique, and not all real number’s in the interval [0, 1] can be exactly represented for a
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fixed value of L. Another considerably important factor when representing a stochastic number is
the dependency or correlation between the inputs [19]. this is an important inherent nature of stochastic
circuits that limits their performance over certain applications when compared to conventional binary
implementations [20]. Figure 2 shows two examples where inaccurate results are caused by correlated
inputs in the multiplication circuit. This correlation comes from the SNGs, where the SNs generated
by SNGs happened to have the same set of sequences of ones and zeros or have some relation among
them as shown in Figure 2. This causes inaccuracy in the output generated, so SNGs are always chosen
in such a way that they produce uncorrelated SNs. LFSRs are known to be best-suited for SC and have
been used for number generation in many SC designs [21]. However, the main disadvantages are
the number of SNGs must be higher (i.e., for every independent input, the number of SNGs used
increases by one) for uncorrelated inputs and need a longer time to operate for accurate and efficient
SC [19].

0101010101 (1/2)

1010101010 (1/2)

0000000000 (0)x

y
Z*

x = y 

0101010101 (1/2)

0101010101 (1/2)

0101010101 (1/2)
x

y
Z*

x = y 

(a)

(b)

Figure 2. (a) Correlation effect in an and gate (multiplier circuit in Stochastic Computing (SC)) when
both bit streams are the same; (b) correlation effect when both bit streams are inverse of each other.

When the circuit size, power and computation time of SC are considered, the main contributions
for these factors to vary significantly are the SNGs. the number of SNGs is proportional to the area of a
stochastic circuit, contributing to about 80% of the circuit area. the power consumed by SC mainly
depends on the number of clock cycles the circuit uses for computation, which in turn, depends on
the SNG properties. the computation time can be limited by SNGs due to their inherent properties
such as random number fluctuations. the computation time increases exponentially with the linear
increase in accuracy, hence the need to address basic questions such as: What is the minimum number
of clock cycles needed to run, so the probability value is represented correctly? What is the effect of
random noise fluctuations in a sequence of stochastic operations? Answers to these questions may
help in decreasing the computation time drastically. SC has another disadvantage over the binary
implementation as all the operations in the SC are single staged; therefore, conventional techniques
such as pipelining to improve the throughput cannot be applied [18].

This paper is organized as follows. Section 3 gives the background of the LD sequences
and LUT-based method implemented. Section 4 discusses the parallel implementation of SNGs
and the different stages used in the parallel implementation of SNGs for parallel stochastic computing.
Section 5 discusses the simulation results comparing the proposed SNG with the pseudo-random
number generators (LFSRs). an analysis of the convergence rate of the proposed SNG with that
of the LFSR is given. A discussion of the application of the proposed serial and parallel SNG in
edge detection and the multiplication circuit and the specification of the advantages over the LFSR
implementation is given. Finally, Section 6 provides the conclusion.
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3. Proposed LUT-Based Method for LD Sequence Generation

In the proposed approach, SNGs are designed to leverage LUTs, which are the distributed memory
elements of the FPGAs. the primary focuses of this paper are on decreasing the power consumed,
improving the accuracy, reducing the number of random fluctuations and reducing the execution time
by parallel implementation using the proposed LUT-based Quasi-SNG (QSNG). FPGAs are the target
hardware implemented in this design for their abundant availability of LUTs and their inherent parallel
nature. Among various applications, LUTs are used in digital signal processing algorithms, where
multiplication is done with a fixed set of coefficients that are already pre-computed and stored in
the LUT, so they can be used without computing them each time [22]. The same concept is used in
this paper, where pre-computed fixed direction vectors are multiplied with a binary number to get
the desired sequence. the LUT-based method is used to develop stochastic bit numbers by using
Quasi-Monte Carlo (QMC) methods [23]. the LD sequences in the literature are used to develop these
stochastic numbers. the main advantage gained over the use of LFSRs is that LD sequences do not suffer
from random fluctuations as the zeros and ones are uniformly spaced [2]. this is unlike LFSRs, where
the zero and ones are non-uniformly spaced. the idea behind the LD sequences is to let the fraction
of the points within any subset of [0, 1) be as close as possible, such that the low-discrepancy points
will spread over [0, 1) as uniformly as possible, reducing gaps and clustering points. Figure 3 shows
the comparison of pseudo-random points (LFSR implementation) and LD points (Sobol sequence) in
the unit square. LD points shows even and uniform coverage of the area of interest as shown and are
to converge faster when applied to SC.

Figure 3. Distribution of pseudo-random points (top) and Low-Discrepancy (LD) points (bottom) in
the unit square [24].

The widely-used sequences that fall under the LD sequence category are the Halton sequence,
Sobol sequence, Faure sequence and Niederreiter sequence [23,25,26]. Generating these sequences
is usually software based because the hardware implementation of all these sequences is not suited
for SC due to their complexity in construction [2]. this disadvantage of LD sequences is mitigated
fully by the proposed LUT-based approach. the main difference in generating the LD sequences lies
in the construction of their direction vectors [23]. Each sequence has a specific type of algorithm to
compute these, and the uniformity of the sequence depends on the way these direction vectors are
computed. In this paper, LUT-based SNGs were designed using three LD sequences including Halton,
Sobol and Niederreiter. the digital method was chosen to design these sequences, restricting the base
value to binary base two. For a detailed explanation about the sequences mentioned above, refer to
[23].

The general structure used for generation of the LD sequence using binary base two is as shown in
Figure 4. It contains RAM to store the direction vectors, a multiplication circuit and bit-wise XOR gates.
In the multiplication circuit, every bit from the counter output is multiplied by each n-bit direction
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vector, stored in the RAM, to generate n-bit intermediate direction vectors. These n-bit intermediate
direction vectors are then bit-wise XORed (i.e., modulo-two addition) to generate an n-bit LD sequence.

n-bit Binary Counter

LUT’s containing Pre-

Computed Direction Vector’s

V1

V2

Vn

X1 X2 Xn

. . . . .

. . . .

.

L

Xn-1

X

X

X

Bit-wise 

XOR
n-bit LD 

sequence

n

n

n

n

n

n

Figure 4. Basic block diagram of the proposed Quasi-Stochastic Number Generator (QSNG).

This can be expressed by using a mathematical expression as shown in the equation below [23]:

N = x1(n− 1) ·V1 ⊕ x2(n− 1) ·V2 ⊕ ..., (1)

where⊕ denotes binary addition or XOR operation, x1(n− 1)x2(n− 1)... is the binary representation of
(N − 1), V1, V2, ...Vn represents the direction vectors and N represents the N-th number in the respective
LD sequence; for example N = 8 represents the eighth number in a Sobol sequence, which is computed
by using n direction vectors and an n-bit counter, when Sobol sequence direction vectors are used
[23]. Sobol and Niederreiter sequences belong to the general class of digital sequences, and their LD
sequence generation can be expressed by the above digital method [25,27]. the Halton sequences
belong to the simplest form of LD sequences, and their construction does not have a general form
as mentioned above in Equation (1). In the above Equation (1), V1, V2, ...Vn are called the direction
vectors and are defined as the constant values that have to be multiplied with the counter output
to generate the desired LD sequence as shown in Figure 4. These values do not change throughout
the operation of the circuit; hence, for the generation of Halton LD sequences, defining the direction
vectors to fit into the above equation of the general digital method of LD sequence is necessary to
generalize the hardware structure for the LD sequences mentioned in the paper.

Halton sequences are defined as the generalized form of van der Corput sequences, which
use a distinct prime base for every dimension. The kth Halton point H(k) is defined as

H(k) =
∞
∑

i=0
ai(k − 1)b−i−1 [26]. Upon closer inspection of the summation, we define ai(k − 1) to

be nothing, but the base b representation of k − 1, and b−i−1 is the base b term, which has to be
multiplied with ai(k− 1) for the generation of each sequence depending on the value of k. the term
b−i−1 is a constant term, and the value does not change with the change in the value of k; hence, these
terms are defined as direction vectors and fit into the general form represented above to generate
an LD sequence by choosing the base b = 2. Sobol and Niederreiter sequences have specific algorithms
to calculate the direction vectors that fit into Equation (1) to generate the LD sequence. In this paper,
algorithms reported in papers [25] and [23] are used to pre-calculate direction vectors. an important
point to note in this implementation is that the number of sequences generated is limited by using
only R base b direction vectors of R bits, which are capable of representing a value of bR − 1 in
base b [23]. For example, to generate a stochastic bit length of 256, the generation of only initial 256
LD sequences is required. For this process, eight-bit length direction vectors, which are capable of
generating an eight-bit length LD sequence every clock cycle, are needed. the maximum value they
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can represent is b8 − 1 = 255, limiting the size of the counter. For the above 256 initial sequences,
an eight-bit counter is needed to count from zero to 255.

After generation, the LD sequence numbers are sent to the comparator where they are compared
with the input value to generate an equivalent stochastic number. the size of the proposed SNG
depends on the stochastic bit length L of the circuit, as well as the number of inputs to the stochastic
circuit. For a stochastic bit length of 256, it is necessary to use an eight-bit binary counter and a
memory space of 64 bits to store eight direction vectors each of an eight-bit length. Independent
stochastic inputs require different direction vectors; as the number of independent stochastic inputs
increases, the memory space required to store these direction vectors increases. LUT-based SNGs were
implemented for 256-, 512-, 1024- and 2048-bit lengths on the Xilinx Virtex 4-SFFPGA (XC4VLX15)
device and synthesized using the Xilinx ISE tool. In this paper, a general form of implementation
was presented, and further optimization of the circuit has been left for a future study. Table 2 clearly
shows that the LD sequence generators make use of more hardware when compared to the LFSRs, but
the convergence and the accuracy obtained from LD sequences are superior enough to justify this extra
hardware utilization (explained in the following sections).

4. Parallel Implementation of Proposed SNGs for SC

The proposed parallel implementation of the SNGs was designed to generate LD sequence
numbers in parallel. These LD sequence numbers generated in parallel were used to generate stochastic
bits in parallel. These stochastic numbers, generated in parallel, are termed as Stochastic Bit Vectors
(SBVs), and the parallel processing used to generate the sequence is termed as Stochastic Bit Matrix
(SBM) processing. Consider a 256-bit length stochastic bit matrix, this design generates p initial bits
every clock cycle of the SBM, instead of generating one bit of the SBM. this is shown in a vector form
in Figure 5, which shows that for one stochastic bit generation using a single SBM Processing Unit
(SBMPU), 256 clock cycles are needed to generate a 256-bit length SBM. By duplicating p SBMPUs in
parallel, it is also possible to generate p stochastic bits of the SBM in just one clock cycle. Hence, 256/p
clock cycles are needed for generating a 256-bit length, thus saving the execution time of the operation
as p increases.

[ 0 1 0 0 1 …. 1 0 1 0 1 ]1x256

SBMPU

[
0

1

.

.

1

0

1

.

.

1

0

1

.

.

1

0

1

.

.

1

0

1

.

.

1. .

SBMPU

SBMPU

SBMPU

. 
. 
.

256 bit-length stream

]px256/p

Parallel stochastic bit matrix processing

Figure 5. Parallel stochastic bit matrix processing. SBMPU, Stochastic Bit Matrix Processing Unit.
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The structure of the parallel implementation of the circuit is shown in Figure 6. the parallel
implementation of the proposed SNGs is done in three stages. the first stage is where the LD sequence
numbers are generated in parallel. the second stage is where the stochastic bit streams are generated
in parallel using comparators and sent to the stochastic circuit for SC. Finally, the third stage is
where the stochastic output is converted back to a binary output by counting the number of ones.
A combinational circuit is implemented for the conversion of stochastic to binary number by counting
the number of ones in the SN by making use of the Hamming weight counter principle [28].

Binary 

number 

b0b1b2..bn

LD sequence 

generation

LD sequence to 

Stochastic 

conversion

Stochastic to 

Binary 

Conversion

Clk Clk

p p

Binary number 

b0b1b2..bn

Stochastic 

Operation

Stage 1 Stage 2 Stage 3

Figure 6. Three stages of parallel implementation.

4.1. First Stage

The first initial p LD sequence numbers are generated in parallel depending on the degree of
parallelism. the general structure of the implementation is as shown in Figure 7. Here, the entire
structure is not duplicated, but the part of the SNG that generates the LD sequence number is duplicated
to reduce the area overhead. the degree of parallelism determines the amount of hardware utilized.
Counters, which follow a specific sequence of counting, are used to implement the SNGs in parallel.
For example, to generate the first initial eight sub-sequences in parallel of a 256-bit stream length,
use eight eight-bit counters, which count by eight. the first counter follows the sequence 0, 8, 16, 32...,
and the second counter follows the sequence 1, 9, 17, 33... in the same way as the eighth counter follows
the sequence 7, 15, 31.... Therefore, in the first clock cycle, the eight counters hold the value from
zero to seven, which means that the first eight LD sequence numbers are generated in parallel. In
the second clock cycle, the counters are incremented by one to hold the value eight to 15, and the next
eight LD sequence numbers are generated. These generated sequences are then sent to the parallel
comparator units where they are compared with the input probability value to generate the stochastic
bits in parallel. this implementation generates a sequence for a single input in parallel. For multiple
inputs, different direction vectors can be used, while the circuit for the generation of the LD sequence
is the same.
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Figure 7. First stage of LD sequence generation.

4.2. Second Stage

The second stage consists of the generation of the stochastic bit stream and the stochastic operation.
For the generation of the stochastic bit stream, the LD sequences generated in parallel are sent to
the comparators, which are also in parallel, such that multiple sequences are compared simultaneously
to generate a stochastic bit stream in parallel. For example, to generate eight-bits of the stochastic bit
stream, use eight comparators where each sequence is compared with the binary probability value to
generate the first eight bits of the SN at the same time. this is termed as eight-bit SBV generation using
an eight SBM processing in one clock cycle by replicating the SBM circuit eight times. Similarly, to
generate 16 SBV’s, 16 SBM processing is done in one clock cycle replicating the SBM circuit 16 times.

The SBM processing circuit involves only that part of the LD sequence generator capable of
generating the sequence (i.e., the multiplication and the bit-wise XOR structure) and an LD sequence
to the stochastic conversion unit (i.e., comparator); the LUTs used are shared among the parallel
SBM processing units as they are constant values that do not change during the execution cycle.
the generated stochastic bits by SBM processing are then sent for computation and then to the stochastic
to binary conversion stage for final output. See Figure 8 for the parallel structure of the stochastic
bit stream generators. The number of comparators used depends on the degree of parallelism
implemented. Hence, the degree of parallelism determines the hardware utilized.
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Figure 8. Second stag: LD to stochastic bit conversion.

4.3. Third Stage

The final stage in a stochastic computation is to create the binary output, which is generated
by using STB conversion units, which are comprised of a counter that counts the number of ones
in the stochastic bit-stream. If the output stochastic bits generated are eight bits per clock cycle, it
is necessary to count the number of ones in the initial eight-bits within one clock cycle; this is not
possible by using a single counter circuit with the same clock period. In this paper, an STB conversion
unit is used that converts the parallel stochastic output into a binary number by using simple adder
circuits. this circuit can count the number of ones in a parallel bit stream by using the Hamming
weight counter principle [28]. the structure of the STB conversion unit for counting the number of
ones in eight parallel stochastic bits of a 256-bit stream length consists of four half adders, two two-bit
adders, a three-bit adder, an eight-bit register and a four-bit adder. an eight-bit register is used to store
the previous count value, and it is updated every clock cycle with the new value (i.e., the number
of ones in the stochastic bit stream). To count the number of ones in 16 stochastic bits of a 256-bit
stream length, eight half adders, four two-bit adders, two three-bit adders, an eight-bit register and an
eight-bit adder are required. Therefore, the size of the STB conversion unit increases with the number
of parallel bits generated. the scalability issue of the STB conversion unit may not be a major concern
as the proposed approach mainly targets image processing applications where the word length for
many operations is less than 16 bits. the next section presents the simulation results of both the parallel
and the serial implementation of the LUT-based LD sequence SNGs.

5. Simulation Results

Simulation results are comprised of both serial and parallel implementation of the LUT-based LD
sequence SNGs. All the circuits have been implemented on a Xilinx Virtex 4 SF FPGA (XC4VLX15)
device and synthesized using the Xilinx ISE 12.1 design suite, with the minimum area and power
reduction as optimization goals. the accuracy of the sequence generator proposed in this work is
compared with that of the pseudo-random number generator (LFSR implementation). the results
demonstrate that the proposed SNG generators have better convergence when compared with LFSRs.
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the LUT-based SNGs are used in image processing and arithmetic application of SC (i.e., edge detection
and multiplication) to compare the results with the LFSR-based SNGs.

5.1. Edge Detection

The proposed SNGs were tested with stochastic edge detection circuit for eight-bit grayscale
images i.e., each pixel was represented using a stochastic bit-length of 256 bits. In this work, an edge
detection circuit has been implemented using the stochastic circuit described in [5] as shown in
Figure 1g. This circuit is implemented based on Robert’s cross algorithm. the test images selected
for implementing the edge detection algorithm are shown in Figure 9. the pixel values of the images
were extracted using MATLAB and were given as the eight-bit binary input to the proposed SNGs.
the outputs from the proposed SNGs were given to the stochastic edge detection circuit, and the
outputs extracted from the post synthesis simulation results were processed in MATLAB. To evaluate
the convergence rate and quality of the image generated by the proposed SNGs, MAE (Mean Absolute
Error) and PSNR (Peak Signal-to-Noise Ratio) were calculated for the output edge detected image
every clock cycle, and the results were compared to the output generated by using pseudo-random
number generators (LFSRs).

(a) Camera-man (b) Pepper (c) Baboon

Figure 9. Test images for edge detection.

PSNR is commonly adopted in the image processing field to quantify the acceptability of erroneous
or noisy images [29]. the PSNR value (usually in the unit of dB) can indicate the similarity of two
different images. Here, the edge detection image generated by running for 256 clock cycles and the
edge detection image generated by running for q clock cycles are used to compute the corresponding
PSNR value. the q value is defined as the number of clock cycles needed to output a satisfactory result
within an absolute error of less than 0.01 between the actual and the predicted value. PSNR value can
be calculated by the equation below [29].

PSNR = 10 · log10
MAX2

I
MSE

, (2)

where MSE = 1
mn

m−1
∑

i=0

n−1
∑

j=0
|I(i, j)− K(i, j)|2 is the mean square error of the error-free and the erroneous

image, MAXI is the maximum image pixel value (e.g., 255 in the eight-bit grayscale image), m and n
represent the width and height of the target image in terms of the number of pixels and I(i, j) and K(i, j)
represent the pixel values of the error-free image and the erroneous/noisy image, respectively. From
Equation (2), when the erroneous image is more similar to the original one, a smaller MSE and a higher
PSNR value will be obtained.
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The MAE value is calculated every clock cycle to determine the q clock cycles needed to output a
satisfactory result within an absolute error of 0.01. It is defined as the average of the absolute difference
between the actual value and the predicted value. It can be calculated by using the equation below [29].

MAE =
1

mn

m−1

∑
i=0

n−1

∑
j=0
|I(i, j)− K(i, j)|, (3)

where m and n represent the width and height of the target image in terms of the number of pixels,
I(i, j) represent the pixel values of the edge detection image generated by running for 256 clock cycles
(actual value) and K(i, j) represent the pixel values of the edge detection image generated by running
for r clock cycles (predicted value) where r varies from one to 255, respectively. When MAE equals
0.01, r equals q.

Initial analysis was done on the open-source benchmark image “Camera-man” shown Figure 9a.
It was found that the edge detection circuit using the pseudo-random generator as an SNG took 128
clock cycles to output an absolute error of less than 0.01 as compared to 22 clock cycles required for
an LUT-based QSNG. A similar kind of analysis on test images “Pepper” and “Baboon” resulted in
the same results. Figures 10 to 12 show the edge detection results for the test images. For Figure 12,
the results were not shown for different clock cycles to reduce the space. Table 1 shows the PSNR
and MAE values for the test images at different clock cycles. From the table, it can be concluded
that the proposed SNGs show a better convergence at a faster rate as compared to pseudo-random
generators with an acceptable image quality [29].

(a) (b) (c) (d) (e)

Figure 10. Edge detection using Linear Feedback Shift Registers (LFSRs): (a) eight clock cycles; (b) 22
clock cycles; (c) 64 clock cycles; (d) 128 clock cycles; (e) 256 clock cycles.

(a) (b) (c) (d) (e)

Figure 11. Edge detection using LD sequence generators: (a) eight clock cycles; (b) 22 clock cycles;
(c) 64 clock cycles; (d) 128 clock cycles; (e) 256 clock cycles.
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(a) 128 - LFSR (b) 22 - QSNG (c) 128 - LFSR (d) 22 - QSNG

Figure 12. Edge detection results from LFSR and QSNG. Note: the 22 clock-cycle QSNG results are
comparable to the 128 clock-cycle LFSR results.

Table 1. Table showing the PSNR and MAE values for test images.

Test-Image Sequence Clock Cycles PSNR (dB) MAE

8 22.99 0.375
Camera-man LD Sequence 22 30.86 0.0101

64 34.31 0.005
128 42.01 0.002

8 19.68 0.1466
Pseudo-random sequence 22 21.23 0.1164

64 26.31 0.0394
128 36.21 0.0101

8 24.84 0.04
Baboon LD Sequence 22 29.61 0.0084

64 34.84 0.0046
128 40.01 0.002

8 20.68 0.1383
Pseudo-random sequence 22 21.36 0.1264

64 28.31 0.02
128 33.21 0.0101

8 26.71 0.0321
Pepper LD Sequence 22 31.06 0.0102

64 35.00 0.0046
128 42.22 0.0025

8 18.68 0.1766
Pseudo-random sequence 22 20.46 0.1464

64 24.35 0.0466
128 32.22 0.0079

5.2. Multiplication

The stochastic multiplication circuit as shown in Figure 1a is being implemented for an eight-bit
binary input number using both pseudo-random and LD sequence generators. the average number of
clock cycles needed to generate a satisfactory result per input is calculated by giving a random set of 256
input values (xand y) and calculating the average number of clock cycles needed to generate an output
with an absolute error of less than 0.01. For the multiplication circuit, the MAE is mathematically
represented as |Pz-Pz∗| where, Pz is the actual output value and Pz∗ is the predicted output value after
stochastic computation. It turns out that for LFSR (pseudo-random number generator) as an SNG,
the average number of clock cycles needed is 512, and for LUT-based QSNG it is 54 clock cycles only.
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5.3. Hardware Utilization

Table 2 shows the comparison of LUT-based QSNG (LD sequence) and LFSR-based
(pseudo-random sequence) SNG in terms of resource utilization, average run-time and the average
power consumed for edge detection and multiplication circuits. In this paper, average run-time
is calculated by multiplying the clock period of the circuit by the average number of clock cycles
needed to generate a satisfactory output, which is defined as an output with an MAE of less than
0.01. the average power is calculated for the average run-time in both approaches. the numbers are
estimated values based on the implementation results on the Xilinx Virtex 4 SF FPGA (XC4VLX15)
device. From Table 2, the average run time and the power consumed are reduced by 4.5-times for
the multiplication circuit and 3.5-times for the edge detection circuit. Though the area occupied by
the LUT-based QSNG is more as compared to the LFSR-based SNG when the convergence power of
the LD sequence is considered acceptable, the results can be achieved at a much faster rate and with a
considerable power reduction as shown in the Table 2. For applications that have a trade-off of area for
speed and power consumed, the proposed LUT-based QSNG would be very beneficial. the proposed
approach is a better low-power design as compared to the conventional stochastic approach.

Table 2. Table showing the resource utilization for the serial implementation.

Sequence Application # of Occupied Max Freq Average Average Power
Slices (MHz) Run-Time (ns) (uW)

LD Sequence Multiplication 70 224.30 240.7 0.3
Edge detection 140 222.30 100 0.12

Pseudo-Random Multiplication 17 458.32 1117.1 1.34
Edge detection 48 374.52 341 0.41

The hardware utilization of the parallel implementation of edge detection and multiplication
circuits is shown in Table 3. Since it is clear from the previous results that the convergence
power of LD sequence generators is better than the LFSRs for the same circuit implementation,
LD sequences generators’ hardware utilization can be reduced by restricting it to the generation of
initial sub-sequences rather than complete sets of sequences. the throughput of the system can be
increased drastically by using the proposed parallel implementation. For instance, the proposed serial
implementation of the edge detection circuit reduces the computation time by a factor of 35-times; if
the same circuit is realized in parallel say with a degree of parallelism of four, we need to run it for just
six clock cycles to generate the initial sub-sequence of 24 LD sequences, which would be enough to
achieve an acceptable output. On the other hand, for the LFSR-based SNG, we need to run it for 32
clock cycles to generate the initial 128 sequences, which are capable enough to output an acceptable
image. the computation time is decreased by a factor of four here suggesting that the throughput of
the system has increased. Therefore, by using the proposed SNGs, both the execution time and power
consumed can be reduced while achieving a higher throughput by implementing them in parallel.
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Table 3. Resource utilization comparison for the parallel implementation.

Sequence Application Degree of Parallelism Slices

4 537
LD Sequence Edge-Detection 8 1069

16 2125

4 104
LD Sequence Multiplication 8 199

16 394

4 190
Pseudo-Random Edge-Detection 8 382

16 767

4 67
Pseudo-Random Multiplication 8 134

16 262

6. Conclusions

This paper has introduced a novel construction method to realize QSNGs on FPGA using LUTs.
the FPGA’s superior reconfigurability was leveraged advantageously for parallel implementation of a
stochastic circuit that outperforms the conventional LFSR-based stochastic circuit approach in terms
of convergence, power consumed and accuracy. Simulation results suggest that both computation
time and power consumed can be saved up to 3.5-times in the edge detection circuit and up to
4.5-times in the multiplication circuit as compared to the conventional stochastic approach. Further,
extensive simulation results justify that for faster (higher throughput) and more accurate computation
with a low-power consumption, making use of FPGA-based parallel quasi-stochastic computing is a
better option. The future scope of this work is to optimize the LD sequence generator circuit with a
combinational logic to generate the LD sequence to reduce the area occupied.
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