
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2017

Novel approaches for efficient stochastic computing Novel approaches for efficient stochastic computing

Ramu Seva

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Seva, Ramu, "Novel approaches for efficient stochastic computing" (2017). Masters Theses. 7659.
https://scholarsmine.mst.edu/masters_theses/7659

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229106315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7659&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7659&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7659?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7659&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

NOVEL APPROACHES FOR EFFICIENT STOCHASTIC COMPUTING

by

RAMU SEVA

A THESIS

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

2017

Approved by

Dr. Minsu Choi, Advisor

Dr. Daryl Beetner

Dr. Mihail Cutitaru

iii

PUBLICATION DISSERTATION OPTION

This dissertation has been prepared in the form of two papers formatted to

the specifications prescribed by Missouri University of Science and Technology:

 Paper I, pages 1 to 23 are intended for submission to IEEE Transaction

on Emerging Topics in Computing (IEEE TETC).

 Paper II, pages 24 to 31 has been accepted to be published in 13th

IEEE International SoC Design Conference (ISOCC).

iv

ABSTRACT

This thesis is comprised of two papers, where the first paper presents a novel

approach for parallel implementation of SC using FPGA (Field Programmable Gate

Array). This paper makes use of the distributed memory elements of FPGAs (i.e.,

look-up-tables -LUTs) to achieve this. An attempt has been made to build the

stochastic number generators (SNGs) by using the proposed LUT approach. The

construction of these SNGs has been influenced by the Quasi-random number se-

quences, which provide the advantage of reducing the random fluctuations present in

the pseudo-random number generators such as LFSR (Linear Feedback Shift Regis-

ter) as well as the execution time by faster convergence. The results prove that the

throughput of the system increases and the execution time is reduced by adopting

the proposed technique.

The second paper of the thesis proposes a novel technique referred to as the

approximate stochastic computing (ASC) approach focusing on image processing ap-

plications to reduce the lengthy computation time of SC with a trade-off in accuracy.

The proposed technique is to truncate low-order bits of the image pixel values for SC

for faster operation, which also causes an error in the binary to stochastic converted

value. Attempts have been made to reduce this error by linearly increasing the clock

cycles rather than exponentially. Experimental results from the well-known SC edge

detection circuit indicate that the proposed technique is a promising approach for

efficient approximate stochastic image processing.

v

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor Dr. Minsu

Choi for the continuous support of my master’s study and research, for his patience,

motivation, enthusiasm, and immense knowledge. His guidance helped me in all the

time of research and writing of this thesis. I could not have imagined having a better

advisor and mentor for my master’s.

Besides my advisor, I would like to thank the rest of my thesis committee,

Dr. Daryl Beetner and Dr. Mihail Cutitaru for their encouragement and insightful

comments.

Last but not the least, I would like to thank my parents for supporting me

throughout my life.

vi

TABLE OF CONTENTS

Page

PUBLICATION DISSERTATION OPTION . iii

ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . ix

SECTION

1. INTRODUCTION. 1

PAPER

I. FPQSC: FPGA BASED PARALLEL QUASI STOCHASTIC COMPUTING 2

ABSTRACT .. 2

1. INTRODUCTION . 4

2. BACKGROUND. 6

3. LUT-BASED METHOD . 10

4. EFFICIENT IMPLEMENTATION FOR PARALLELISM. 16

4.1. FIRST STAGE.. 17

vii

4.2. SECOND STAGE .. 18

4.3. THIRD STAGE .. 20

5. SIMULATION RESULTS. 22

5.1. ACCURACY OF THE PROPOSED SEQUENCE GENERATORS. 22

5.2. EDGE DETECTION.. 24

6. CONCLUSION . 27

II. APPROXIMATE STOCHASTIC COMPUTING (ASC) FOR IMAGE PRO-
CESSING APPLICATIONS . 28

ABSTRACT .. 28

1. INTRODUCTION . 30

2. APPROXIMATE STOCHASTIC COMPUTING: EDGE DETECTION CASE
STUDY . 31

3. PROPOSED DESIGN . 32

4. ADAPTIVE TRUNCATION FOR ERROR REDUCTION 34

4.1. PERFORMANCE VERIFICATION .. 35

5. CONCLUSION . 38

SECTION

2. CONCLUSION. 39

BIBLIOGRAPHY. 40

VITA . 43

viii

LIST OF ILLUSTRATIONS

Figure Page

PAPER I

2.1 Basic circuits used in stochastic computation [1]. 7

2.2 a) Correlation effect in an AND gate (multiplier circuit in SC) when the
both bit streams are the same; b) Correlation effect when both bit streams
are inverse of each other. 8

3.1 Distribution of pseudo-random points (top) and LD points (bottom) in
the unit square. 11

3.2 Basic block diagram of the proposed QSNG. 12

4.1 Parallel stochastic bit matrix processing. 17

4.2 Three stages of parallel implementation . 18

4.3 First stage LD sequence generation.. 19

4.4 Second stage - LD to stochastic bit conversion. 20

5.1 Edge detection using LFSR’s . 25

5.2 Edge detection using LD sequence genrators . 26

PAPER II

3.1 (a) Proposed circuit for approximate stochastic edge detection; (b) Stochas-
tic bit generation; (c) Edge detection circuit used [2]. 33

4.1 Edge detection implemented using 8-bit length pixel values 35

4.2 Edge detection implemented using 4-bit length pixel values 36

ix

LIST OF TABLES

Table Page

PAPER I

3.1 Table showing the resource utilization . 15

5.1 Minimum number of clock cycles needed for various input values in LD
SNG and LFSR SNG. Average time saved is also shown. 23

5.2 Resource utilization comparison. 26

SECTION

1. INTRODUCTION

Deterministic computing has dominated the digital world for decades. Lately,

new techniques are being adopted other than conventional deterministic approach

such as SC (stochastic computing) technique. It is probabilistic in nature and has

the advantages of lower power and area overhead. It is being implemented widely in

image processing applications as well as in designing simple arithmetic circuits, but

the main challenges it faces are longer computation time and lower accuracy. In this

thesis, these two main challenges of the SC are studied and new approaches have been

presented to address them.

The first part of the dissertation deals with the construction of new SNG

(stochastic number generator) called as Quasi-SNG (QSNG) which tries to address

the issue of accurate stochastic computing and proposes a possible parallel implemen-

tation using it to increase the throughput of the system as compared to the implemen-

tation using traditional SNG built using LFSRs. The design has been implemented

using Xilinx Virtex 4 FPGAs.

The second part of the dissertation talks about minimizing the computation

time of a SC in an image processing application, the edge detection by approximating

a 8-bit length pixel value to a 4-bit length and converting it to stochastic numbers.

This approach though introduces a certain amount of a known error attempts have

been made to reduce this error to an acceptable limit by increasing the clock cycle

linearly rather than exponentially. The acceptable quality of an image has been

analyzed in terms of PSNR (peak signal-t-noise ratio) and MSE (mean square error)

values.

2

PAPER

I. FPQSC: FPGA BASED PARALLEL QUASI STOCHASTIC
COMPUTING

Ramu Seva1 Prashanthi Metku1, Kyung Ki Kim2, Yong-Bin Kim3 and Minsu Choi1

1Dept of ECE, Missouri Univ of Science & Technology, Rolla, MO, USA,

{pmcmc,rs2k6,choim}@mst.edu

2Dept of Electronic Eng., Daegu University, Gyeongsan, Korea, kkkim@daegu.ac.kr

3Dept of ECE, Northeastern University, Boston, MA, USA, ybk@ece.neu.edu

ABSTRACT1

High performance of FPGAs in image processing applications is justified by

their flexible reconfigurability, inherent parallel nature and availability of large amount

of internal memories. Lately, SC (stochastic computing) has been found to be sig-

nificantly advantageous in image processing applications because of lower hardware

complexity and power consumption. However, its viability is deemed to be limited

due to excessive run-time requirement. In this paper, a novel method is introduced

1To be submitted to IEEE Transaction on Emerging Topics in Computing

3

where efficient parallel implementation of SC is accomplished using FPGA to address

this issue. The proposed approach is to leverage the distributed memory elements of

FPGAs (i.e., look-up-tables - LUTs) to achieve this. An attempt has been made to

build the stochastic number generators (SNGs) using LUTs. The construction of these

SNGs has been influenced by Quasi-random number sequences, which provide the ad-

vantage of reducing the random fluctuations present in the pseudo-random number

generators such as LFSRs (Linear Feedback Shift Registers) as well the execution

time via significantly faster convergence. The proposed design has been implemented

on Virtex-4 FPGA and results have been compared with the parallel implementation

of conventional stochastic computation for edge detection application. Results prove

that by using this approach the throughput of the system increases and the execution

time is reduced significantly.

4

1. INTRODUCTION

In general, many image processing applications deal with data words of less

than 16-bits. Compared to application specific integrated circuits (ASICs), FPGAs

can provide higher performance with lesser clock speed. This high performance of

FPGAs is also supported by availability of large amounts of internal memory blocks,

which provide parallel access to large data sets. Graphics processing units (GPUs)

are another hardware platform where high performance can be achieved at higher

clock rates, but they have been limited to fewer number of applications as they are

designed for a specific set of operations and realizing them for various applications is

difficult.

Stochastic computing (SC) is an alternative computing style which has re-

cently proved to be advantageous in image processing applications, because of its

potential area and power benefits compared to binary implementations. The perfor-

mance benefits of parallel implementation of a stochastic circuit using FPGAs for

an image processing application has not been analyzed in the prior literature until

now. Taking advantage of parallel implementation of stochastic circuits (such as edge

detection and multiplication) is possible by using the distributed memory elements

of FPGAs. New SNGs are designed to utilize quasi-random numbers, which makes

use of the distributed memory elements in this paper. Though the design alternative

selected here is certainly not new [3], no prior work in SC has analyzed it in the

FPGA context. While it is possible to use linear feedback shift registers (LFSRs) as

random number generators in SNGs, making use of low-discrepancy sequences (LDS)

or quasi-random numbers is advantageous, because they do not suffer from random

5

fluctuations and converge faster. This paper mainly focuses on the possibility of par-

allel stochastic computation for image processing applications using FPGAs. The

main contributions of this paper are as follows:

1. Reduction of the random fluctuation errors present in the traditional pseudo

random numbers by adopting a new way of constructing SNGs by using look-up

table (LUT) based approach and low-discrepancy (LD) subrandom sequences.

2. Parallel implementation is accomplished to increase the throughput and de-

crease the execution time of SC.

6

2. BACKGROUND

SC has its roots in 1960’s and it is used for probability representation using

digital bit streams [4, 5]. SC has been successfully applied to many applications like

image processing, neural networks, LDPC codes, factor graphs, fault-tree analysis,

and in filters [2, 6, 7, 8, 9, 10]. Extensive use of stochastic computation is still lim-

ited, because of it’s long run-time and inaccuracy. Recent improvements have mainly

focused on improving the accuracy and performance of the stochastic circuits by shar-

ing consecutive bit streams, sharing the stochastic number generators, exploiting the

correlation, and using the spectral transform approach for stochastic circuit synthesis

[11, 12, 13, 14]. This paper also explores new methods to improve the accuracy and

performance of stochastic circuits.

Fig. 2.1 shows the basic SC circuits. The function implemented by these

circuits varies with the number interpretation i.e., unipolar, bipolar or inverted bipolar

(UP, BP, IBP) where unipolar format is used to represent real number x in the range of

[0, 1], bipolar is used to represent real number x between [−1, 1] , and IBP is inverted

bipolar format which is an invert of BP ranging from [−1, 1], where the boolean values

0 and 1 in the stochastic number (SN) represent 1 and −1 respectively rather than

−1 and 1 in the case of BP format. One can refer to [13] for more details on different

SN formats. In SC, a probability value is represented by a binary bit stream of 0s

and 1s with specific length L. To represent a probability value of 0.5, the half of

the bits in the bit stream of length L are represented by 1s. For example, if 0.5

is to be represented by a bit stream of 10 bits, then 0101010101 bit stream can be

used. This is just one way of representing it and the representation of a probability

7

AND XNOR INV

MUX

Random number

Generator

Binary

Counter

Binary

Number N

Stochastic

Number X

Stochastic

Number X

Binary

Number N

Clk

Clk

1 k

k

k
1A

B

<

Z = x.y (UP)

(a)

Z = x.y (BP)

(b)
Z = 1-x (UP)

= -x (BP)

(c)

1/2

0

1

x

y

z

Z = (x+y)/2 (UP, BP)

(d)

(e)

(f)

x

y y

x

x

Xi+1,j+1

Xi+1,j

Xi,j+1

Xi,j+1

Random input

r = 0.5

Zi,j

(g)

Edge

detection

Figure 2.1. Basic circuits used in stochastic computation [1].

value in SC is not unique and not all real number’s in the interval [0, 1] can be

exactly represented for a fixed value of L. Another considerably important factor

when representing a stochastic number is the dependency or correlation between

the inputs [15]. This is an important inherent nature of stochastic circuits which

limits its performance over certain applications when compared to conventional binary

implementations [16]. Fig.2.2 shows two examples where inaccurate results are caused

by correlated inputs in the multiplication circuit. This correlation comes from the

SNGs, where the SNs generated by SNGs happened to have the same set of sequences

of 1s and 0s or with some relation among them as shown in Fig. 2.2. This causes

inaccuracy in the output generated, so SNGs are always chosen in such a way they

8

produce uncorrelated SNs. LFSRs are known to be best-suited for SC and have been

used for number generation in many SC designs [17]. However, the main disadvantages

are the number of SNGs must be higher (i.e., for every independent input, the number

of SNGs used increases by one) for uncorrelated inputs and longer time to operate for

accurate and efficient SC [15]. When the circuit size, power, and computation time of

0101010101 (1/2)

1010101010 (1/2)

0000000000 (0)x

y
Z*

x = y

0101010101 (1/2)

0101010101 (1/2)

0101010101 (1/2)
x

y
Z*

x = y

(a)

(b)

Figure 2.2. a) Correlation effect in an AND gate (multiplier circuit in SC) when the
both bit streams are the same; b) Correlation effect when both bit streams are inverse
of each other.

SC are considered, the main contributions for these factors to vary significantly are

the SNGs. The number of SNGs is proportional to the area of a stochastic circuit,

contributing to about 80% of the circuit area. The power consumed by SC mainly

depends on the number of clock cycles the circuit uses for computation which, in turn,

depends on the SNG properties. The computation time can be limited by SNGs due

to their inherent properties such as random number fluctuations. The computation

time increases exponentially with the linear increase in accuracy. Hence the need to

address the basic questions such as: — What is the minimum number of clock cycles

needed to run, so the probability value is represented correctly? What is the effect

of random noise fluctuations in a sequence of stochastic operations? — Answers to

9

these questions may help in decreasing the computation time drastically. SC has

another disadvantage over the binary implementation as all the operations in the SC

are single staged; therefore, conventional techniques such as pipelining to improve the

throughput cannot be applied [1].

This paper is organized as follows. Section 3 gives the background of LD

sequences and LUT-based method implemented. Section 4 discusses the parallel

implementation of SNGs and the different stages used in the parallel implementation

of SNGs. Section 5 discusses the simulation results comparing the proposed SNG

with the pseudo-random number generators (LFSRs). Analysis of the convergence

rate of the proposed SNG with that of the LFSR. Discussion of the application of the

proposed parallel SNG in edge detection and multiplication circuit and specification

of the advantages over the LFSR implementation. Finally, Section 6 asserts the

conclusion.

10

3. LUT-BASED METHOD

In the proposed approach, SNGs are designed to leverage LUTs, which are

the distributed memory elements of the FPGAs. FPGAs are the target hardware

implemented in this design for their abundant availability of LUTs and their inherent

parallel nature. One important point to be noted here, since the target devices

chosen are FPGAs for the implementation of a digital circuit, reduction in area is

not the main concern. The primary focuses in this paper are improving the accuracy,

reducing the number of random fluctuations, and reducing the execution time by

parallel implementation using the proposed LUT-based Quasi-SNG (QSNG).

LUT is defined as a group of logic gates hard-wired on the FPGA. LUTs store

a defined list of outputs for every set of inputs and provide a fast way to obtain the

output of a logic operation. LUTs are single memory elements, where the inputs

are the addresses, and the corresponding outputs are the data stored in the given

addresses. Among various applications, LUTs are used in digital signal processing

algorithms, where multiplication is done with a fixed set of coefficients which are

already pre-computed and stored in the LUT so they can be used without computing

them each time. The same concept is used in this paper, computing fixed direction

vectors which have to be multiplied with a binary number to get the desired sequence.

LUT-based method is used to develop stochastic bit numbers by using Quasi-Monte

Carlo (QMC) methods. The LD sequences in the literature are used to develop these

stochastic numbers [18]. The main advantage gained over use of LFSRs, is that LD

sequences do not suffer from random fluctuations as the 0s and 1s are uniformly

spaced [3]. This is unlike LFSRs, where the 0s and 1s are non-uniformly spaced. The

11

idea behind the LD sequences is to let the fraction of the points within any subset

of [0, 1] be as close as possible, such that the low-discrepancy points will spread over

[0, 1] as uniformly as possible, reducing gaps and clustering points. Fig. 3.1 shows the

comparison of pseudo-random points and LD points in the unit square. LD points

shows even and uniform coverage of the area of interest as shown and are to converge

faster when applied to SC. The widely used sequences which fall under LD sequence

Figure 3.1. Distribution of pseudo-random points (top) and LD points (bottom) in
the unit square.

category are the Halton sequence, Sobol sequence, Faure sequence, and Niederreiter

sequence [18]. Generating these sequences is usually software based because hardware

implementation of these sequences is not suited for SC due to their complexity in

construction [3]. This disadvantage of LD sequences is mitigated fully by the proposed

LUT-based approach. The main difference in generating the LD sequences lies in the

construction of their direction vectors [18]. Each sequence has a specific type of

algorithm to compute these and the uniformity of the sequence depends on the way

these direction vectors are computed. In this paper, LUT-based SNGs were designed

using three LD sequences including Halton, Sobol, and Niederreiter. The digital

method was chosen to design these sequences, restricting the base value to binary

12

base 2. For detailed explanation about the sequences mentioned above, refer to [18].

General structure used for generation of LD sequence using binary base 2 is as shown

in Fig. 3.2. It contains RAM to store the direction vectors, a multiplication circuit

and bit-wise XOR gates. In the multiplication circuit, every bit from the counter

n-bit Binary Counter

LUT’s containing Pre-

Computed Direction Vector’s

V1

V2

Vn

X1 X2 Xn

.

. . . .

.

L

Xn-1

X

X

X

Bit-wise

XOR
n-bit LD

sequence

n

n

n

n

n

n

Figure 3.2. Basic block diagram of the proposed QSNG.

output is multiplied by each n-bit direction vector, stored in the RAM, to generate

n-bit intermediate direction vectors. These n-bit intermediate direction vectors are

then bit-wise XORed (i.e., modulo-2 addition) to generate a n-bit LD sequence in the

unit interval [0, 1].

This can be expressed by using a mathematical expression as shown in the

equation below:

N = x1(n− 1)V1 ⊕ x2(n− 1)V2 ⊕ (3.1)

where ⊕ denotes binary addition or XOR operation, x1(n− 1)x2(n− 1)... is the bi-

nary representation of (N − 1), V1, V2, ...Vn represents the direction vectors and N

represents the Nth number in the respective LD sequence; for example N = 8 rep-

resents the 8th number in a Sobol sequence, which is computed by using n direction

vectors and a n bit counter, when Sobol sequence direction vectors are used [19].

13

Sobol and Niederreiter sequences belong to the general class of digital se-

quences and their LD sequence generation can be expressed by the above digital

method. The Halton sequences belong to the simplest form of LD sequences and

their construction does not have a general form as mentioned above in Equation 3.1.

In the above Equation 3.1, V1, V2, ...Vn are called the direction vectors and are de-

fined as the constant values which have to be multiplied with the counter output to

generate the desired LD sequence as shown in Fig. 3.2. These values do not change

throughout the operation of the circuit. Hence, for the generation of Halton LD se-

quences, defining the direction vectors to fit into the above equation of the general

digital method of LD sequence is necessary to generalize the hardware structure for

all of the LD sequences.

Halton sequences are defined as the generalized form of Van der Corput se-

quences which use a distinct prime base for every dimension. The kth Halton point

H(k) is defined as H(k) =
∞∑
i=0

ai(k− 1)b−i−1 [20]. Upon closer inspection of the sum-

mation we define ai(k− 1) is nothing but the base b representation of k− 1 and b−i−1

is the base b term which has to be multiplied with ai(k − 1) for generation of each

sequence depending on the value of k. The term b−i−1 is a constant term, the value

does not change with the change in the value of k. Hence, these terms are defined

as direction vectors and fit into the general form represented above to generate a LD

sequence by choosing the base b = 2.

Sobol and Niederreiter sequences have specific algorithms to calculate the di-

rection vectors which fit into the equation above to generate the LD sequence. In this

paper, algorithms reported in papers [21] and [18] are used to pre-calculate direction

vectors. An important point to note in this implementation is that the number of

sequences generated is limited by using only R base b direction vectors of R digits

14

which are capable of representing a value of bR − 1 in base b using R digits [18] by

depending on the bit length requirement L. For example, to generate a stochastic

bit length of 256, generation of only initial 256 LD sequences is required. For this

process, 8-bit length direction vectors, which are capable of generating an 8-bit length

LD sequence every clock cycle are needed. The maximum value they can represent

is b8 − 1 = 255 limiting the size of the counter. For the above 256 initial sequences a

8-bit counter is needed to count from 0 to 255.

After generation, the LD sequence numbers are sent to the comparator where

they are compared with the input value to generate an equivalent stochastic number.

The size of the proposed SNG depends on the stochastic bit length L of the circuit

as well as the number of inputs to the stochastic circuit. For a stochastic bit length

of 256 it is necessary to use an 8 bit binary counter and a memory space of 64

bits to store 8 direction vectors each of 8 bit length. Independent stochastic inputs

require different direction vectors; as the number of independent stochastic inputs

increases the memory space required to store these direction vectors increases. LUT-

based SNGs were implemented for 256, 512, 1024 and 2048 bit lengths on the Xilinx

Virtex 4-SFFPGA (XC4VLX15) device and synthesized using Xilinx ISE tool. The

resource utilization, speed, and throughput are shown in Table 3.1. Note the resource

utilization shown in the Table 3.1 includes the SNG as well as the stochastic-to-binary

(STB) conversion unit. In this paper, a general form of implementation was presented

and further optimization of the circuit has been left for the future study. This table

clearly shows the LD sequence generators make use of more hardware when compared

to the LFSRs, but the convergence and the accuracy obtained from LD sequences are

superior enough to justify this extra hardware utilization (explained in the following

section).

15

Table 3.1. Table showing the resource utilization

Sequence Bit-stream Slices Frequency Throughput
length (MHz) (Gbits/s)

LD Sequence

256 30 299.8 0.3
512 31 298.9 0.3
1024 33 297.94 0.3
2048 35 297.90 0.3

Pseudo-Random

256 9 1134.2 1.13
512 10 1133.46 1.12
1024 11 1133.46 1.12
2048 12 1133.46 1.12

The frequency mentioned in the table corresponds to the maximum frequency

and the average computation time of a stochastic computation can be calculated

simply by dividing the number of clock cycles needed for a successful stochastic com-

putation by the maximum frequency value.

16

4. EFFICIENT IMPLEMENTATION FOR PARALLELISM

The proposed parallel implementation of the SNGs was designed to generate

LD sequence numbers in parallel. These LD sequence numbers generated in parallel

were used to generate stochastic bits in parallel. These stochastic numbers, generated

parallelly, are termed as stochastic bit vectors (SBVs) and the parallel processing

used to generate the sequence is termed as stochastic bit matrix (SBM) processing.

Consider a 256 bit length stochastic bit matrix, this design generates p initial bits

every clock cycle of the SBM, instead of generating one bit of the SBM. This is shown

in a vector form in Fig. 4.1 which shows that for one stochastic bit generation using

a single SBM processing unit (SBMPU) 256 clock cycles is needed to generate a 256

bit length SBM. By duplicating p SBMPUs in parallel, it is also possible to generate

p stochastic bits of the SBM in just one clock cycle. Hence, 256/p clock cycles are

needed for generating 256 bit length, thus saving execution time of the operation as

p increases. The structure of the parallel implementation of the circuit is shown in

Fig. 4.2. The parallel implementation of the proposed SNGs is done in three stages.

First stage is where the LD sequence numbers are generated in parallel. The second

stage is where the stochastic bit streams are generated parallelly using comparators.

Finally, the third stage is where the stochastic bits are converted back to binary

number by counting the number of ones. A combinational circuit is implemented for

the conversion of stochastic to binary number by counting the number of 1s in the

SN by making use of Hamming weight counter principle, which is capable of counting

only the number of 1s in a bit stream [22].

17

[0 1 0 0 1 …. 1 0 1 0 1]1x256

SBMPU

[
0

1

.

.

1

0

1

.

.

1

0

1

.

.

1

0

1

.

.

1

0

1

.

.

1. .

SBMPU

SBMPU

SBMPU

.
.
.

256 bit-length stream

]px256/p

Parallel stochastic bit matrix processing

Figure 4.1. Parallel stochastic bit matrix processing.

4.1. FIRST STAGE

The first initial p LD sequence numbers are generated parallelly depending on

the degree of parallelism. The general structure of the implementation is as shown in

Fig. 4.3. Here the entire structure is not duplicated, but the part of the SNG which

generates the LD sequence number is duplicated to significantly reduce area overhead.

The degree of parallelism determines the amount of hardware utilized. Counters,

which follow a specific sequence of counting, are used to implement the SNGs in

parallel. For example, to generate the first initial 8 sub-sequences in parallel of a 256

bit stream length, use eight 8-bit counters which count by 8. The first counter follows

the sequence 0, 8, 16, 32... and the second counter follows the sequence 1, 9, 17, 33...

in the same way the 8th counter follows the sequence 7, 15, 31.... Therefore, in the

18

Binary

number

b0b1b2..bn

LD sequence

generation

LD sequence to

Stochastic

conversion

Stochastic to

Binary

Conversion

Clk Clk

p p

Binary number

b0b1b2..bn

Stochastic

Operation

Stage 1 Stage 2 Stage 3

Figure 4.2. Three stages of parallel implementation

first clock cycle the eight counters hold the value from 0 to 7, which means that

the first eight LD sequence numbers are generated in parallel. In the second clock

cycle, the counters are incremented by 1 to hold the value 8 to 15 and the next 8

LD sequence numbers are generated. These generated sequences are then sent to the

parallel comparator units where they are compared with the input probability value

to generate the stochastic bits in parallel. This implementation generates a sequence

for a single input parallelly. For multiple inputs, different direction vectors can be

used while the circuit for the generation of the LD sequence is the same.

4.2. SECOND STAGE

The second stage consists of generation of the stochastic bit stream and the

stochastic operation. For generation of the stochastic bit stream, the LD sequences

generated parallelly are sent to the comparators, which are also in parallel, such that

multiple sequences are compared simultaneously to generate a stochastic bit stream

parallelly. For example, to generate the first initial 8-bits of the stochastic bit stream,

use 8 comparators where each sequence is compared with the binary probability value

to generate the first 8 bits of the SN at the same time. This is termed as 8-bit SBV

19

LUT’s containing Pre-Computed

Direction Vector’s

V1

V2

Vn

. . .
.

.

.

n

n

n

n

n

n

n

n

n

n-bit Binary Counter

V1

V2

Vn

X1 Xp+1
X(n-p)+1

.

.

.

L

X

X

X

Bit-wise

XOR

n

n

n

n

n

n

.

.

.

.

.

.

L1

L2

Lp

Figure 4.3. First stage LD sequence generation.

generation using a 8 SBM processing in one clock cycle by replicating the SBM circuit

8 times. Similarly, in order to generate 16 SBV’s, 16 SBM processing is done in one

clock cycle replicating the SBM circuit 16 times. SBM processing circuit involves

only that part of the LD sequence generator capable of generating the sequence (i.e.,

the multiplication and the bit-wise XOR structure) and a LD sequence to stochastic

conversion unit (i.e., comparator), LUTs used are shared among the parallel SBM

processing units as they are constant values which do not change during the execution

cycle. The generated stochastic bits by SBM processing are then sent for computation

and then to the stochastic to binary conversion stage for final output. See Fig. 4.4

for the parallel structure of the stochastic bit stream generators. The number of

comparators used depends on the degree of parallelism implemented. Hence, the

degree of parallelism determines the hardware utilized.

20

Binary

Number b0b1b2b3...bn

X1

n

n
A

B

<

Binary

Number b0b1b2b3...bn

X2

n

n

<

Binary

Number b0b1b2b3...bn

Xp

n

n

<

.

.

.

LD sequence number L1

LD sequence number L2

LD sequence number

Lp

A

B

A

B

Figure 4.4. Second stage - LD to stochastic bit conversion.

4.3. THIRD STAGE

The final stage in a stochastic computation is to create the binary output,

which is generated by using STB conversion units which comprise of a counter which

counts the number of 1s in the stochastic bit-stream. If the output stochastic bits

generated are 8-bits per clock cycle, it is necessary to count the number of 1s in the

initial 8-bits within one clock cycle; this is not possible by using a single counter

circuit with the same clock period. In this paper, a STB conversion unit is used

which converts the parallel stochastic output into binary number by using simple

adder circuits. This circuit is capable of counting the number of 1s in a parallel bit

stream. Hamming weight counter principle is used in this work [22]. The structure of

21

the STB conversion unit for counting the number of 1s in first initial 8-bits consists

of four half adders, two 2-bit adders, a 3 bit adder, a 4-bit register, and a 4-bit adder

cascaded. A 4 bit register is used to store the previous count value and it is updated

every clock cycle with the new value (i.e., the number of 1s in the stochastic bit

stream). To count the number of 1s in 16 initial stochastic bits of a 256 bit stream

length, eight half adders, four 2-bit adders, two 3-bit adders, an 8-bit register, and an

8-bit adder are required. It should be noted that the unused bits in the 8 bit-adder

and the register are assigned zero value initially. Therefore, the size of STB conversion

unit increases with the number of parallel bits generated. Scalability issue of the STB

conversion unit may not be a major concern as the proposed approach mainly targets

image processing applications where the word length for many operations is less than

16-bit. The next section presents the simulation results of both the parallel and the

serial implementation of the LUT-based LD sequence SNGs.

22

5. SIMULATION RESULTS

Simulation results are organized into two groups. First, the accuracy of se-

quence generator proposed in this work is compared with that of the pseudo-random

number generator. This demonstrates that the proposed SNG generators have better

convergence when compared with LFSRs. Second, the LUT-based SNGs are used in

image processing and arithmetic application of SC (i.e., edge detection and multiplica-

tion) to compare the results with the LFSR-based SNGs. The parallel implementation

of LFSRs was done by extracting all the pseudo-random sequences and saving them

in the RAM, then calling the initial sub-sequence every clock cycle, depending on the

degree of parallelism. The main disadvantage of this implementation is saving all the

pseudo-random sequences in RAM as the initial sub-sequence of a particular pseudo-

random sequence cannot be generated in parallel using multiple LFSRs because of

it’s construction. Simulation results that will be presented in next sections show that

LUT-based LD sequence generators give better results in terms of throughput and

convergence and computation time.

5.1. ACCURACY OF THE PROPOSED SEQUENCE GENERATORS

Table 5.1 shows the convergence and amount of time possibly saved in compu-

tation by using the-LUT based SNGs. Simulations were carried out using LUT-based

SNGs and LFSRs for comparison. Different bit stream lengths of 256, 512, 1024 and

2048 were generated and the convergence of the probability values in the order of

10−3 was extensively studied. Comparing with pseudo-random number generators

(LFSRs), LD sequence SNGs outperformed them over the range of probability values

23

Table 5.1. Minimum number of clock cycles needed for various input values in LD
SNG and LFSR SNG. Average time saved is also shown.

Value Min # of clock cycles to converge

LD-Sequence LFSR Average Stochastic
time saved bit-length

0.5 16 64 25% 2048

0.125 64 256 25% 2048

0.015625 128 384 33.33% 2048

0.0078125 192 512 37.5% 2048

0.00390625 256 1024 25% 2048

0.001953125 512 1536 33.33% 2048

0.0009765625 1024 2048 50% 2048

in [0, 1] space. They converge much faster than the LFSRs, which results in significant

reduction in computation time. An important conclusion of the convergence results

is, if a bit stream length to be generated is in the order of 1
2n

, the minimum number of

clock cycles needed to run is equal to 2n using LD sequence SNGs. The stochastic bit

length used for this analysis is 2048. The average time saved is calculated by giving

same input values multiple times and by finding the average value of the required

number of clock cycles used to represent each input value for both the LFSR and

LD-sequence implementation.

Results show that the average time saved is roughly around 25% for input val-

ues of 0.5 and 0.125. As the probability value decreases, the number of clock cycles

increases exponentially, saving up to 50% of the computation time when compared to

the LFSRs. Note, all these LUT-based SNGs were implemented using base-2 direc-

tion vectors. For independent SN generation, independent direction vectors are used

to generate independent outputs to eliminate the inaccuracy caused by correlation.

Another important thing to note about the LD sequence generators is that they never

24

deviate away from the input value. In other words, there is always a deterministic

error bound between the actual value and the generated value whereas in the case of

LFSRs the error bounds cannot be determined because of the random behavior and

the inherent random noise fluctuations they possess.

5.2. EDGE DETECTION

The proposed SNGs were tested with edge detection as well as multiplication

circuits for parallel implementations. In this work, edge detection circuit has been

implemented using the stochastic circuit described in [2] as shown in Fig. 2.1(g). The

simulation results of the edge detection circuit show that for initial sub-sequence of

just 8 clock cycles, almost all the edges in case of LD sequences are clearly seen when

compared to 64 clock cycles of the LFSR implementation as shown in Fig. 5.1 and

Fig. 5.2. The run time of 256 clock cycles using LFSR implementation is equivalent

to 64 clock cycles of LD sequence implementation. This shows the execution time

can be reduced by almost 4 times using LD sequences.

The hardware utilization of parallel implementation of edge detection and multipli-

cation circuits is shown in the Table 5.2. It is clear that since the convergence power

of LD sequence generators is better than the LFSRs for the same circuit implementa-

tion LD sequences generators hardware utilization can be reduced by restricting it to

generation of initial sub-sequences rather than complete sets of sequences. Therefore

by using the proposed SNGs, better convergence will result. Also, higher throughput

can be achieved as needed by implementing them in parallel.

25

(a) 8 clock cycles (b) 64 clock cycles (c) 128 clock cycles

(d) 256 clock cycles

Figure 5.1. Edge detection using LFSR’s

For a multiplication circuit simulations have been performed for a random set

of 256 values to obtain an average value of computation time using LFSRs and LD

seqeunce generators. The average computation time using LFSRs was around 512

clock cycles per input and the LD sequence generators was around 54 clock cycles per

input. Similarly for the edge detection circuit it was 128 and 22 clock cycles using

LFSRs and LD sequence generators.

26

(a) 8 clock cycles (b) 64 clock cycles (c) 128 clock cycles

(d) 256 clock cycles

Figure 5.2. Edge detection using LD sequence genrators

Table 5.2. Resource utilization comparison.

Sequence Application Degree of Parallelism Slices

LD Sequence
Edge-Detection 4 537

8 1069
16 2125

LD Sequence
Multiplication 4 104

8 199
16 394

LFSR
Edge-Detection 4 190

8 382
16 757

LFSR
Multiplication 4 67

8 134
16 262

27

6. CONCLUSION

This paper has introduced a novel construction method to realize QSNGs on

FPGA using LUTs. FPGA’s superior reconfigurability was leveraged advantageously

for parallel implementation of a stochastic circuit which outperforms the conventional

LFSR-based stochastic circuit approach in terms of convergence and accuracy. Sim-

ulation results suggest that upto 50% of the computation time can be saved when

dealing with the probability values less than 10−3. Further, extensive simulation

results justify that for faster and more accurate computation of image processing ap-

plication making use of FPGA based parallel quasi-stochastic computing is a better

option. The future scope of this work is to optimize the LD-sequence generator circuit

with a combinational logic to generate the LD sequence to reduce the area occupied.

28

II. APPROXIMATE STOCHASTIC COMPUTING (ASC) FOR IMAGE
PROCESSING APPLICATIONS

Ramu Seva1 Prashanthi Metku1, Kyung Ki Kim2, Yong-Bin Kim3 and Minsu Choi1

1Dept of ECE, Missouri Univ of Science & Technology, Rolla, MO, USA,

{pmcmc,rs2k6,choim}@mst.edu

2Dept of Electronic Eng., Daegu University, Gyeongsan, Korea, kkkim@daegu.ac.kr

3Dept of ECE, Northeastern University, Boston, MA, USA, ybk@ece.neu.edu

ABSTRACT1

SC (stochastic computation) has been found to be advantageous in image processing

applications because of its lower area consumption and low-power operation. How-

ever, one of the major issues with the SC is its long run-time requirement for accurate

results. In this paper, a new technique called the approximate stochastic computing

(ASC) approach focusing on image processing applications is proposed to reduce the

computation time of a SC with an acceptable trade-off in accuracy. The proposed

technique is to truncate low-order bits of the image pixel values for SC for faster oper-

ation, which introduce an error in the binary to stochastic converted value. Attempts

have been made to reduce this error by linearly increasing the clock cycles rather than

exponentially. Experimental results from the well-known SC edge detection circuit

1Submitted to 13th IEEE International SoC Design Conference (2016)

29

indicate that this technique is a promising approach for efficient approximate image

processing.

30

1. INTRODUCTION

SC has its roots from 1960’s and it is used for probability representation us-

ing digital bit streams [4, 5]. SC has been successfully applied to many applications

such as image processing, neural networks, LDPC (Low Density Parity Code) de-

coders, and factor graphs [15]. However, the extensive use of stochastic computation

is deemed to be limited, because of it’s long run-time requirement and inherent in-

accuracy. Recent improvements have mainly focused on improving the accuracy and

performance of the stochastic circuits by sharing consecutive bit streams, sharing

the stochastic number generators, exploiting the correlation, and using the spectral

transform approach for stochastic circuit synthesis [11, 12, 13, 14].

In this paper, a new approach called Approximate Stochastic Computing

(ASC) to decrease the computation time has been proposed and analyzed. The

proposed ASC is motivated by certain applications, such as audio, video and image

processing, where an approximate or less-than-optimal solution is acceptable in lieu

of smaller hardware circuit and faster operation. The proposed ASC technique has

been validated by a specific image processing application called edge detection in this

paper, although it can be used for various other applications, where a small amount

of approximation is acceptable.

This paper is organized as follows. Section 2 gives the background of the

proposed design approach. Then, section 3 discusses about new design and the im-

age processing application implemented in this paper. Finally, Section 5 makes the

conclusion.

31

2. APPROXIMATE STOCHASTIC COMPUTING: EDGE
DETECTION CASE STUDY

Image processing belongs to the class of applications which demonstrate inher-

ent error resilience, where approximate computing techniques can be used to design

efficient digital systems [23]. Approximate computing (AC) is different from SC in a

way that it does not involve assumptions and circuits involve deterministic designs

rather than probabilistic designs implemented in SC. AC uses statistical properties

of data and algorithms to trade quality for energy reduction and/or faster operation

[24].

As a case study, both AC and SC approaches are combined to build an ASC

edge detection circuit which provides area/speed efficient design with an acceptable

error bound. As an input to the proposed ASC edge detection circuit, a grayscale

bitmap image has been used where each pixel value is represented in 8 bit binary

number. Then, an approximation of pixel value is initially done where the pixel value

of an image (ranges from 0 to 255) represented by 8 bit length is truncated to 4 bits

(ranges from 0 to 15) by considering the first four MSBs of the binary value.

By ignoring the first four LSBs an error percentage of 100% is recorded for

smaller binary values with 4 MSBs given as 00002, but when the percentage contribu-

tion of the weight of 4 LSBs towards a pixel value ranging from 0 to 255 is considered,

it’s almost less than equal to 6% (15 ÷ 255 ∼= 6%) as the maximum weight of the

last four LSBs is 15. In this paper these 4 bits are ignored and the first four MSBs

are used for stochastic computation. The error introduced by ignoring the 4 LSBs is

further reduced by considering the weight of the 5th bit in a 8 bit pixel value.

32

3. PROPOSED DESIGN

The proposed circuit for the stochastic edge detection is as shown in Fig.

3.1. Generally stochastic computation consists of three parts: firstly, the binary to

stochastic conversion (BTS) which is done by using a random-number generator and

a comparator; secondly, a stochastic circuit used for stochastic computation; and

finally, a stochastic to binary conversion (SBC) unit used to convert the stochastic

value back to binary. In most of the SC designs a counter is used for SBC and a LFSR

is used for BTS conversion. The proposed design is similar to the general structure

of stochastic computation, the only difference is the use of D-flip flop to delay the

stochastic output generated from the stochastic circuit, a decision block and a MUX

to initiate the counter value.

The decision block changes with the number of the inputs to the stochastic circuit

and the operation of the stochastic circuit. In this work, edge detection unit has been

implemented using the stochastic circuit described in [2] as shown in Fig. 3.1(c). It is

based on well-known Robert’s cross algorithm, where it computes a moving average

on a window of size 2×2 for each pixel xi,j at row i and j of the image, and generates

an output value zi,j according to the following formula [2].

zi,j = 0.5× (|xi,j − xi+1,j+1|+ |xi,j+1 − xi+1,j|) (3.1)

The circuit shown in the Fig. 3.1(c), is capable of performing this operation if the

four inputs of the XOR gate are correlated. This implies that we need to use a single

SNG or BTS conversion unit for this operation [2]. The select input to the MUX

is generated by using a BTS conversion unit with a constant input binary value of

33

FF

S

Binary

output
Counter

Stochastic

edge

detection

circuit

4Bit

LFSR

bnbn-1bn-2bn-3

<

Xi,j

Xi+1,j+1

Xi+1,j

Xi,j+1

X

Voter

Input (B)

Bi,j 5th MSB

Bi+1,j+1 5th MSB

Bi+1,j 5th MSB

Bi,j+1 5th MSB

(a)

(b)

Xi+1,j+1

Xi+1,j

Xi,j+1

Xi,j+1

Random input

r = 0.5

Zi,j

Zi,j

(c)

Figure 3.1. (a) Proposed circuit for approximate stochastic edge detection; (b)
Stochastic bit generation; (c) Edge detection circuit used [2].

0.5 such that it generates a alternate 0s and 1s every clock cycle evaluating to a

probability value of 0.5 by the end of stochastic operation.

34

4. ADAPTIVE TRUNCATION FOR ERROR REDUCTION

Error caused by the proposed approximation approach is solely determined by

the weights of the truncated bits. If they are 00002, no error will be caused, since 0s

are weightless. The maximum relative error will happen when MSBs and LSBs are

given as 00002 (i.e., weightless) and 11112 (i.e., weights maximized), respectively. To

reduce the maximum relative error bound, a novel adaptive truncation method has

been proposed in this work.

In the proposed design shown in Fig. 3.1(a), a decision is made based on

comparing the 5th bits of the inputs, if any of the two inputs is ’1’ the counter

starts counting from ’1’ and if not it starts from ’0’. An additional delay of one

clock cycle initially gets injected by using a flip flop to decide the initial stage of the

counter. A MUX is controlled by a select signal in such a way that for the first clock

cycle the select signal is high and for all the remaining clock cycles of the stochastic

computation it remains low. In this way, the error caused from the approximation

can be considerably reduced by adaptively taking 5th bit when it is set. Just one extra

count gets added to the counter and a weight equivalent to the truncated 4 LSBs is

added. Hence, a linear increase in the clock cycles can result in significantly smaller

error. The Fig. 4.1 and Fig. 4.2 show the simulation results of an edge detection

circuit implemented on a standard image (”Pepper”) using this approach. In this

approach, the final binary value is scaled accordingly to have the pixel values in the

range of 0 to 255 in decimal (i.e., the output from the counter is multiplied by a factor

of 16).

35

(a) Original image (b) Edge detection-original

Figure 4.1. Edge detection implemented using 8-bit length pixel values

4.1. PERFORMANCE VERIFICATION

To evaluate the acceptability and quality of the image generated by the pro-

posed approach, PSNR (Peak Signal-to-Noise Ratio) value of the original image with

respect to the generated image was calculated. PSNR is commonly adopted in the

image processing field to quantify the acceptability of erroneous or noisy images [25].

PSNR value (usually in the unit of dB) can indicate the similarity of two different

images. Here the edge detection image generated by using 8-bit length and the edge

detection image generated by using the proposed ASC approach are used to compute

the corresponding PSNR value. In the case that these two images are more similar, a

higher PSNR value will be obtained. PSNR value can be calculated by the equation

below.

PSNR = 10 · log10

MAX2
I

MSE
(4.1)

36

MSE = 82.37; PSNR = 28.97

(a) Edge detection-16 clock cycles

MSE = 41.23 ; PSNR = 31.86

(b) Edge detection-17 clock cycles

Figure 4.2. Edge detection implemented using 4-bit length pixel values

where MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

|I(i, j)−K(i, j)|2 is the mean square error of the error-free

and the erroneous image, MAXI is the maximum image pixel values (e.g., 255 in

8-bit grayscale image), m and n represent the width and height of the target image

in terms of the number of pixels and I(i, j) and K(i, j) represent the pixel values of

the error-free image and the erroneous/noisy image, respectively.

For PSNR-based numerical analysis, an open-source benchmark image called

”Pepper” shown in Fig. 4.1(a) has been used. Its exact edge detection result is also

presented in Fig. 4.1(b), which provides the basis of comparison. Fig. 4.2 shows

the output image generated by the proposed ASC approaches including the fixed

truncation and adaptive truncation, respectively. When the 4 LSBs are ignored and

the error in the output image is calculated PSNR value of 28.97 dB and a mean

square error (MSE) of 82.37 are recorded. When the 5th bit is adaptively considered

and the output of the counter is increased by ’1’, PSNR value increases to 31.86 dB

and MSE decreases to 41.23. Hence, just by adding an additional clock cycle delay,

37

MSE was drastically decreased by almost 50%. When the quality of the output image

is considered, both approaches have PSNR values which are in the acceptable range

as all the edges of the original output image and the output images by the proposed

approaches are well-matched visually.

38

5. CONCLUSION

In this paper, an approximate computing technique has been used to reduce

the stochastic computation time drastically and still achieve acceptable results. From

Fig. 4.1 and Fig. 4.2, it can be observed that the fixed 4 bit truncation yields

a visually acceptable results with 16 times reduction in the total number of clock

cycles. Furthermore, adding one more clock cycle by checking the weight of the 5th

MSB, even more accurate result can be generated.

The edge detection results suggest that this approach can be beneficial to

design efficient circuits with smaller circuit size and faster operation for image pro-

cessing applications, where 100% accuracy is not needed. Future work would be to

implement the same design techniques to various image processing applications as

well as arithmetic circuits to reduce the error percentage further by increasing the

clock cycles linearly rather than exponentially.

39

SECTION

2. CONCLUSION

QSNGs have a better accuracy and convergence as compared to LFSRs. For

a parallel implementation proposed approach using QSNGs show higher throughput

values for multiplication and edge detection application. Future work to be done is

to optimize the QSNG circuit for less area. The approximate stochastic computing

approach used in the second part of the dissertation proved to be beneficial for edge

detection application. Further analysis has to done on other image processing appli-

cations as well as on arithmetic circuits to achieve acceptable results with the linear

increase in clock cycle rather than exponential.

40

BIBLIOGRAPHY

[1] Bert Moons and Marian Verhelst. Energy-Efficiency and Accuracy of Stochastic
Computing Circuits in Emerging Technologies. Emerging and Selected Topics in
Circuits and Systems, IEEE Journal on, 4(4):475–486, 2014.

[2] Armin Alaghi, Cheng Li, and John P Hayes. Stochastic circuits for real-time
image-processing applications. In Proceedings of the 50th Annual Design Au-
tomation Conference, page 136. ACM, 2013.

[3] Armin Alaghi and John P Hayes. Fast and accurate computation using stochastic
circuits. In Proceedings of the conference on Design, Automation & Test in
Europe, page 76. European Design and Automation Association, 2014.

[4] Brian R Gaines. Stochastic computing. In Proceedings of the April 18-20, 1967,
spring joint computer conference, pages 149–156. ACM, 1967.

[5] BR Gaines. Stochastic computing systems. In Advances in information systems
science, pages 37–172. Springer, 1969.

[6] Ali Naderi, Shie Mannor, Mohamad Sawan, and Warren J Gross. Delayed
stochastic decoding of LDPC codes. Signal Processing, IEEE Transactions on,
59(11):5617–5626, 2011.

[7] Hananeh Aliee and Hamid R Zarandi. Fault tree analysis using stochastic logic:
A reliable and high speed computing. In Reliability and Maintainability Sympo-
sium (RAMS), 2011 Proceedings-Annual, pages 1–6. IEEE, 2011.

[8] Peng Li and David J Lilja. Using stochastic computing to implement digital
image processing algorithms. In Computer Design (ICCD), 2011 IEEE 29th
International Conference on, pages 154–161. IEEE, 2011.

[9] Yun-Nan Chang and Keshab Parhi. Architectures for digital filters using stochas-
tic computing. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on, pages 2697–2701. IEEE, 2013.

[10] Naman Saraf, Kia Bazargan, David J Lilja, and Marc D Riedel. IIR filters using
stochastic arithmetic. In Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2014, pages 1–6. IEEE, 2014.

41

[11] Peng Li and David J Lilja. Accelerating the performance of stochastic encoding-
based computations by sharing bits in consecutive bit streams. In Application-
Specific Systems, Architectures and Processors (ASAP), 2013 IEEE 24th Inter-
national Conference on, pages 257–260. IEEE, 2013.

[12] Hideyuki Ichihara, Shin Ishii, Daiki Sunamori, Tsuyoshi Iwagaki, and Takeru
Inoue. Compact and accurate stochastic circuits with shared random number
sources. In Computer Design (ICCD), 2014 32nd IEEE International Conference
on, pages 361–366. IEEE, 2014.

[13] Armin Alaghi and John P Hayes. A spectral transform approach to stochastic
circuits. In Computer Design (ICCD), 2012 IEEE 30th International Conference
on, pages 315–321. IEEE, 2012.

[14] Armin Alaghi and John Hayes. STRAUSS: Spectral Transform Use in Stochastic
Circuit Synthesis. 2012.

[15] Armin Alaghi and John P Hayes. Survey of stochastic computing. ACM Trans-
actions on Embedded computing systems (TECS), 12(2s):92, 2013.

[16] Rajit Manohar. Comparing Stochastic and Deterministic Computing.

[17] PK Gupta and R Kumaresan. Binary multiplication with PN sequences. Acous-
tics, Speech and Signal Processing, IEEE Transactions on, 36(4):603–606, 1988.

[18] Paul Bratley, Bennett L Fox, and Harald Niederreiter. Implementation and tests
of low-discrepancy sequences. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 2(3):195–213, 1992.

[19] Ishaan L Dalal, Deian Stefan, and Jared Harwayne-Gidansky. Low discrep-
ancy sequences for monte carlo simulations on reconfigurable platforms. In
Application-Specific Systems, Architectures and Processors, 2008. ASAP 2008.
International Conference on, pages 108–113. IEEE, 2008.

[20] John H Halton. On the efficiency of certain quasi-random sequences of points
in evaluating multi-dimensional integrals. Numerische Mathematik, 2(1):84–90,
1960.

[21] IM Sobol. The distribution of points in a cube and the approximate evaluation
of integrals, Zh. Vychisl. Mat. i Mat. Fiz. 7 (1967), 784–802.

[22] Behrooz Parhami. Efficient hamming weight comparators for binary vectors
based on accumulative and up/down parallel counters. Circuits and Systems II:
Express Briefs, IEEE Transactions on, 56(2):167–171, 2009.

42

[23] J. Han and M. Orshansky. Approximate computing: An emerging paradigm for
energy-efficient design. In 2013 18th IEEE European Test Symposium (ETS),
pages 1–6, May 2013.

[24] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan. Macaco: Modeling
and analysis of circuits for approximate computing. In 2011 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), pages 667–673, Nov
2011.

[25] T. Y. Hsieh, Y. H. Peng, and C. C. Ku. An efficient test methodology for
image processing applications based on error-tolerance. In 2013 22nd Asian Test
Symposium, pages 289–294, Nov 2013.

43

VITA

Ramu Seva was born in Hyderabad, India. After completing his schoolwork at

International School in 2006, Ramu did his engineering from Institute of Aeronautical

Engineering affiliated to Jawaharlal Nehru Technological University in Hyderabad.

He received a Bachelor of Technology with a major in Electrical and Electronics

Engineering from Jawaharlal Nehru Technological University in May 2012. In June

2012, he was employed as a graduate engineer at IFB Industries, Goa, India and

then followed to start his own start-up Clique Media Solutions, Hyderabad, India in

January 2013. In May 2017, he completed his MS degree from Computer engineering

department of Missouri University of Science and Technology at Rolla, MO, USA.

	Novel approaches for efficient stochastic computing
	Recommended Citation

	tmp.1498761367.pdf.OV8J8

