10,175 research outputs found

    Stick Shift: Autonomous Vehicles, Driving Jobs, and the Future of Work

    Get PDF
    More than 30 companies say they are just a few years away from introducing autonomous vehicles to the mass market. While it is unknown what the ultimate impact of autonomous vehicles will have on jobs, there is a possibility that there could be a relatively rapid transition. This is likely to cause significant pain in a number of communities, as well as exacerbate the losses of "good jobs," a category that includes some driving jobs. It would be prudent to strengthen our safety net and labor market to absorb a shock from autonomous-vehicle technology, as well as ensure that autonomous-vehicle technology is safe and reliable. This will be a challenge, given the recent change in the party controlling the executive branch, and its new secretary of transportation. Strengthening the unemployment insurance system, improving apprenticeship programs, making higher education more affordable, and committing to full employment can not only minimize the harm to displaced workers, but can provide them with opportunities that lead to fulfilling and economically sustaining jobs. This is good policy whether or not autonomous vehicles are around the corner

    Evolving a rule system controller for automatic driving in a car racing competition

    Get PDF
    IEEE Symposium on Computational Intelligence and Games. Perth, Australia, 15-18 December 2008.The techniques and the technologies supporting Automatic Vehicle Guidance are important issues. Automobile manufacturers view automatic driving as a very interesting product with motivating key features which allow improvement of the car safety, reduction in emission or fuel consumption or optimization of driver comfort during long journeys. Car racing is an active research field where new advances in aerodynamics, consumption and engine power are critical each season. Our proposal is to research how evolutionary computation techniques can help in this field. For this work we have designed an automatic controller that learns rules with a genetic algorithm. This paper is a report of the results obtained by this controller during the car racing competition held in Hong Kong during the IEEE World Congress on Computational Intelligence (WCCI 2008).Publicad

    DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car

    Full text link
    We present DeepPicar, a low-cost deep neural network based autonomous car platform. DeepPicar is a small scale replication of a real self-driving car called DAVE-2 by NVIDIA. DAVE-2 uses a deep convolutional neural network (CNN), which takes images from a front-facing camera as input and produces car steering angles as output. DeepPicar uses the same network architecture---9 layers, 27 million connections and 250K parameters---and can drive itself in real-time using a web camera and a Raspberry Pi 3 quad-core platform. Using DeepPicar, we analyze the Pi 3's computing capabilities to support end-to-end deep learning based real-time control of autonomous vehicles. We also systematically compare other contemporary embedded computing platforms using the DeepPicar's CNN-based real-time control workload. We find that all tested platforms, including the Pi 3, are capable of supporting the CNN-based real-time control, from 20 Hz up to 100 Hz, depending on hardware platform. However, we find that shared resource contention remains an important issue that must be considered in applying CNN models on shared memory based embedded computing platforms; we observe up to 11.6X execution time increase in the CNN based control loop due to shared resource contention. To protect the CNN workload, we also evaluate state-of-the-art cache partitioning and memory bandwidth throttling techniques on the Pi 3. We find that cache partitioning is ineffective, while memory bandwidth throttling is an effective solution.Comment: To be published as a conference paper at RTCSA 201

    Mitigations to Reduce the Law of Unintended Consequences for Autonomy and Other Technological Advances

    Get PDF
    The United Nations states that Earths population is expected to reach just under 10 billion people (9.7) by the year 2050. To meet the demands of 10 billion people, governments, multinational corporations and global leaders are relying on autonomy and technological advances to augment and/or accommodate human efforts to meet the required needs of daily living. Genetically modified organisms (GMOs), Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) gene-edited plants and cloning will be utilized to expand human food supply. Biomimetic implants are expected to improve life expectancy with 3D printed body parts. Human functioning will be extended with wearables and cybernetic implants continuing humanitys path toward transhumanism. Families will be strengthened with 3 parent households. Disease will surely be eradicated using the CRISPR-CAS9 genetic engineering revolution to design out undesirable human traits and to design in new capabilities. With autonomous cars, trucks and buses on our roads and on-demand autonomous aircraft delivering pizzas, medical prescriptions and groceries in the air and multi-planet vehicles traversing space, utopia will finally arrive! Or will it? All of these powerful, man-made, technological systems will experience unintended consequences with certainty. Instead of over-reacting with hysteria and fear, we should be seeking answers to the following questions - What skills are required to architect socially-healthy technological systems for 2050? What mindsets should we embody to ameliorate hubris syndrome and to build our future technological systems with deliberation, soberness and social responsibility

    Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks

    Full text link
    The benefits of autonomous vehicles (AVs) are widely acknowledged, but there are concerns about the extent of these benefits and AV risks and unintended consequences. In this article, we first examine AVs and different categories of the technological risks associated with them. We then explore strategies that can be adopted to address these risks, and explore emerging responses by governments for addressing AV risks. Our analyses reveal that, thus far, governments have in most instances avoided stringent measures in order to promote AV developments and the majority of responses are non-binding and focus on creating councils or working groups to better explore AV implications. The US has been active in introducing legislations to address issues related to privacy and cybersecurity. The UK and Germany, in particular, have enacted laws to address liability issues, other countries mostly acknowledge these issues, but have yet to implement specific strategies. To address privacy and cybersecurity risks strategies ranging from introduction or amendment of non-AV specific legislation to creating working groups have been adopted. Much less attention has been paid to issues such as environmental and employment risks, although a few governments have begun programmes to retrain workers who might be negatively affected.Comment: Transport Reviews, 201

    The Critical Role of Public Charging Infrastructure

    Full text link
    Editors: Peter Fox-Penner, PhD, Z. Justin Ren, PhD, David O. JermainA decade after the launch of the contemporary global electric vehicle (EV) market, most cities face a major challenge preparing for rising EV demand. Some cities, and the leaders who shape them, are meeting and even leading demand for EV infrastructure. This book aggregates deep, groundbreaking research in the areas of urban EV deployment for city managers, private developers, urban planners, and utilities who want to understand and lead change
    corecore