3,198 research outputs found

    Get rid of inline assembly through verification-oriented lifting

    Full text link
    Formal methods for software development have made great strides in the last two decades, to the point that their application in safety-critical embedded software is an undeniable success. Their extension to non-critical software is one of the notable forthcoming challenges. For example, C programmers regularly use inline assembly for low-level optimizations and system primitives. This usually results in driving state-of-the-art formal analyzers developed for C ineffective. We thus propose TInA, an automated, generic, trustable and verification-oriented lifting technique turning inline assembly into semantically equivalent C code, in order to take advantage of existing C analyzers. Extensive experiments on real-world C code with inline assembly (including GMP and ffmpeg) show the feasibility and benefits of TInA

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Mining a Small Medical Data Set by Integrating the Decision Tree and t-test

    Get PDF
    [[abstract]]Although several researchers have used statistical methods to prove that aspiration followed by the injection of 95% ethanol left in situ (retention) is an effective treatment for ovarian endometriomas, very few discuss the different conditions that could generate different recovery rates for the patients. Therefore, this study adopts the statistical method and decision tree techniques together to analyze the postoperative status of ovarian endometriosis patients under different conditions. Since our collected data set is small, containing only 212 records, we use all of these data as the training data. Therefore, instead of using a resultant tree to generate rules directly, we use the value of each node as a cut point to generate all possible rules from the tree first. Then, using t-test, we verify the rules to discover some useful description rules after all possible rules from the tree have been generated. Experimental results show that our approach can find some new interesting knowledge about recurrent ovarian endometriomas under different conditions.[[journaltype]]國外[[incitationindex]]EI[[booktype]]紙本[[countrycodes]]FI

    Domain-Specific Computing Architectures and Paradigms

    Full text link
    We live in an exciting era where artificial intelligence (AI) is fundamentally shifting the dynamics of industries and businesses around the world. AI algorithms such as deep learning (DL) have drastically advanced the state-of-the-art cognition and learning capabilities. However, the power of modern AI algorithms can only be enabled if the underlying domain-specific computing hardware can deliver orders of magnitude more performance and energy efficiency. This work focuses on this goal and explores three parts of the domain-specific computing acceleration problem; encapsulating specialized hardware and software architectures and paradigms that support the ever-growing processing demand of modern AI applications from the edge to the cloud. This first part of this work investigates the optimizations of a sparse spatio-temporal (ST) cognitive system-on-a-chip (SoC). This design extracts ST features from videos and leverages sparse inference and kernel compression to efficiently perform action classification and motion tracking. The second part of this work explores the significance of dataflows and reduction mechanisms for sparse deep neural network (DNN) acceleration. This design features a dynamic, look-ahead index matching unit in hardware to efficiently discover fine-grained parallelism, achieving high energy efficiency and low control complexity for a wide variety of DNN layers. Lastly, this work expands the scope to real-time machine learning (RTML) acceleration. A new high-level architecture modeling framework is proposed. Specifically, this framework consists of a set of high-performance RTML-specific architecture design templates, and a Python-based high-level modeling and compiler tool chain for efficient cross-stack architecture design and exploration.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162870/1/lchingen_1.pd

    Contextual Bandit Modeling for Dynamic Runtime Control in Computer Systems

    Get PDF
    Modern operating systems and microarchitectures provide a myriad of mechanisms for monitoring and affecting system operation and resource utilization at runtime. Dynamic runtime control of these mechanisms can tailor system operation to the characteristics and behavior of the current workload, resulting in improved performance. However, developing effective models for system control can be challenging. Existing methods often require extensive manual effort, computation time, and domain knowledge to identify relevant low-level performance metrics, relate low-level performance metrics and high-level control decisions to workload performance, and to evaluate the resulting control models. This dissertation develops a general framework, based on the contextual bandit, for describing and learning effective models for runtime system control. Random profiling is used to characterize the relationship between workload behavior, system configuration, and performance. The framework is evaluated in the context of two applications of progressive complexity; first, the selection of paging modes (Shadow Paging, Hardware-Assisted Page) in the Xen virtual machine memory manager; second, the utilization of hardware memory prefetching for multi-core, multi-tenant workloads with cross-core contention for shared memory resources, such as the last-level cache and memory bandwidth. The resulting models for both applications are competitive in comparison to existing runtime control approaches. For paging mode selection, the resulting model provides equivalent performance to the state of the art while substantially reducing the computation requirements of profiling. For hardware memory prefetcher utilization, the resulting models are the first to provide dynamic control for hardware prefetchers using workload statistics. Finally, a correlation-based feature selection method is evaluated for identifying relevant low-level performance metrics related to hardware memory prefetching

    Selective Dynamic Analysis of Virtualized Whole-System Guest Environments

    Get PDF
    Dynamic binary analysis is a prevalent and indispensable technique in program analysis. While several dynamic binary analysis tools and frameworks have been proposed, all suffer from one or more of: prohibitive performance degradation, a semantic gap between the analysis code and the execution under analysis, architecture/OS specificity, being user-mode only, and lacking flexibility and extendability. This dissertation describes the design of the Dynamic Executable Code Analysis Framework (DECAF), a virtual machine-based, multi-target, whole-system dynamic binary analysis framework. In short, DECAF seeks to address the shortcomings of existing whole-system dynamic analysis tools and extend the state of the art by utilizing a combination of novel techniques to provide rich analysis functionality without crippling amounts of execution overhead. DECAF extends the mature QEMU whole-system emulator, a type-2 hypervisor capable of emulating every instruction that executes within a complete guest system environment. DECAF provides a novel, hardware event-based method of just-in-time virtual machine introspection (VMI) to address the semantic gap problem. It also implements a novel instruction-level taint tracking engine at bitwise level of granularity, ensuring that taint propagation is sound and highly precise throughout the guest environment. A formal analysis of the taint propagation rules is provided to verify that most instructions introduce neither false positives nor false negatives. DECAF’s design also provides a plugin architecture with a simple-to-use, event-driven programming interface that makes it both flexible and extendable for a variety of analysis tasks. The implementation of DECAF consists of 9550 lines of C++ code and 10270 lines of C code. Its performance is evaluated using CPU2006 SPEC benchmarks, which show an average overhead of 605% for system wide tainting and 12% for VMI. Three platformneutral DECAF plugins - Instruction Tracer, Keylogger Detector, and API Tracer - are described and evaluated in this dissertation to demonstrate the ease of use and effectiveness of DECAF in writing cross-platform and system-wide analysis tools. This dissertation also presents the Virtual Device Fuzzer (VDF), a scalable fuzz testing framework for discovering bugs within the virtual devices implemented as part of QEMU. Such bugs could be used by malicious software executing within a guest under analysis by DECAF, so the discovery, reproduction, and diagnosis of such bugs helps to protect DECAF against attack while improving QEMU and any analysis platforms built upon QEMU. VDF uses selective instrumentation to perform targeted fuzz testing, which explores only the branches of execution belonging to virtual devices under analysis. By leveraging record and replay of memory-mapped I/O activity, VDF quickly cycles virtual devices through an arbitrarily large number of states without requiring a guest OS to be booted or present. Once a test case is discovered that triggers a bug, VDF reduces the test case to the minimum number of reads/writes required to trigger the bug and generates source code suitable for reproducing the bug during debugging and analysis. VDF is evaluated by fuzz testing eighteen QEMU virtual devices, generating 1014 crash or hang test cases that reveal bugs in six of the tested devices. Over 80% of the crashes and hangs were discovered within the first day of testing. VDF covered an average of 62.32% of virtual device branches during testing, and the average test case was minimized to a reproduction test case only 18.57% of its original size

    Optimizing Streaming Parallelism on Heterogeneous Many-Core Architectures

    Get PDF
    As many-core accelerators keep integrating more processing units, it becomes increasingly more difficult for a parallel application to make effective use of all available resources. An effective way for improving hardware utilization is to exploit spatial and temporal sharing of the heterogeneous processing units by multiplexing computation and communication tasks - a strategy known as heterogeneous streaming. Achieving effective heterogeneous streaming requires carefully partitioning hardware among tasks, and matching the granularity of task parallelism to the resource partition. However, finding the right resource partitioning and task granularity is extremely challenging, because there is a large number of possible solutions and the optimal solution varies across programs and datasets. This article presents an automatic approach to quickly derive a good solution for hardware resource partition and task granularity for task-based parallel applications on heterogeneous many-core architectures. Our approach employs a performance model to estimate the resulting performance of the target application under a given resource partition and task granularity configuration. The model is used as a utility to quickly search for a good configuration at runtime. Instead of hand-crafting an analytical model that requires expert insights into low-level hardware details, we employ machine learning techniques to automatically learn it. We achieve this by first learning a predictive model offline using training programs. The learnt model can then be used to predict the performance of any unseen program at runtime. We apply our approach to 39 representative parallel applications and evaluate it on two representative heterogeneous many-core platforms: a CPU-XeonPhi platform and a CPU-GPU platform. Compared to the single-stream version, our approach achieves, on average, a 1.6x and 1.1x speedup on the XeonPhi and the GPU platform, respectively. These results translate to over 93% of the performance delivered by a theoretically perfect predictor
    • …
    corecore