6,940 research outputs found

    Safety-Aware Apprenticeship Learning

    Full text link
    Apprenticeship learning (AL) is a kind of Learning from Demonstration techniques where the reward function of a Markov Decision Process (MDP) is unknown to the learning agent and the agent has to derive a good policy by observing an expert's demonstrations. In this paper, we study the problem of how to make AL algorithms inherently safe while still meeting its learning objective. We consider a setting where the unknown reward function is assumed to be a linear combination of a set of state features, and the safety property is specified in Probabilistic Computation Tree Logic (PCTL). By embedding probabilistic model checking inside AL, we propose a novel counterexample-guided approach that can ensure safety while retaining performance of the learnt policy. We demonstrate the effectiveness of our approach on several challenging AL scenarios where safety is essential.Comment: Accepted by International Conference on Computer Aided Verification (CAV) 201

    Overfitting in Synthesis: Theory and Practice (Extended Version)

    Get PDF
    In syntax-guided synthesis (SyGuS), a synthesizer's goal is to automatically generate a program belonging to a grammar of possible implementations that meets a logical specification. We investigate a common limitation across state-of-the-art SyGuS tools that perform counterexample-guided inductive synthesis (CEGIS). We empirically observe that as the expressiveness of the provided grammar increases, the performance of these tools degrades significantly. We claim that this degradation is not only due to a larger search space, but also due to overfitting. We formally define this phenomenon and prove no-free-lunch theorems for SyGuS, which reveal a fundamental tradeoff between synthesizer performance and grammar expressiveness. A standard approach to mitigate overfitting in machine learning is to run multiple learners with varying expressiveness in parallel. We demonstrate that this insight can immediately benefit existing SyGuS tools. We also propose a novel single-threaded technique called hybrid enumeration that interleaves different grammars and outperforms the winner of the 2018 SyGuS competition (Inv track), solving more problems and achieving a 5×5\times mean speedup.Comment: 24 pages (5 pages of appendices), 7 figures, includes proofs of theorem

    Simulation Intelligence: Towards a New Generation of Scientific Methods

    Full text link
    The original "Seven Motifs" set forth a roadmap of essential methods for the field of scientific computing, where a motif is an algorithmic method that captures a pattern of computation and data movement. We present the "Nine Motifs of Simulation Intelligence", a roadmap for the development and integration of the essential algorithms necessary for a merger of scientific computing, scientific simulation, and artificial intelligence. We call this merger simulation intelligence (SI), for short. We argue the motifs of simulation intelligence are interconnected and interdependent, much like the components within the layers of an operating system. Using this metaphor, we explore the nature of each layer of the simulation intelligence operating system stack (SI-stack) and the motifs therein: (1) Multi-physics and multi-scale modeling; (2) Surrogate modeling and emulation; (3) Simulation-based inference; (4) Causal modeling and inference; (5) Agent-based modeling; (6) Probabilistic programming; (7) Differentiable programming; (8) Open-ended optimization; (9) Machine programming. We believe coordinated efforts between motifs offers immense opportunity to accelerate scientific discovery, from solving inverse problems in synthetic biology and climate science, to directing nuclear energy experiments and predicting emergent behavior in socioeconomic settings. We elaborate on each layer of the SI-stack, detailing the state-of-art methods, presenting examples to highlight challenges and opportunities, and advocating for specific ways to advance the motifs and the synergies from their combinations. Advancing and integrating these technologies can enable a robust and efficient hypothesis-simulation-analysis type of scientific method, which we introduce with several use-cases for human-machine teaming and automated science

    Learning Differentiable Programs with Admissible Neural Heuristics

    Get PDF
    We study the problem of learning differentiable functions expressed as programs in a domain-specific language. Such programmatic models can offer benefits such as composability and interpretability; however, learning them requires optimizing over a combinatorial space of program "architectures". We frame this optimization problem as a search in a weighted graph whose paths encode top-down derivations of program syntax. Our key innovation is to view various classes of neural networks as continuous relaxations over the space of programs, which can then be used to complete any partial program. This relaxed program is differentiable and can be trained end-to-end, and the resulting training loss is an approximately admissible heuristic that can guide the combinatorial search. We instantiate our approach on top of the A-star algorithm and an iteratively deepened branch-and-bound search, and use these algorithms to learn programmatic classifiers in three sequence classification tasks. Our experiments show that the algorithms outperform state-of-the-art methods for program learning, and that they discover programmatic classifiers that yield natural interpretations and achieve competitive accuracy

    Learning Differentiable Programs with Admissible Neural Heuristics

    Get PDF
    We study the problem of learning differentiable functions expressed as programs in a domain-specific language. Such programmatic models can offer benefits such as composability and interpretability; however, learning them requires optimizing over a combinatorial space of program "architectures". We frame this optimization problem as a search in a weighted graph whose paths encode top-down derivations of program syntax. Our key innovation is to view various classes of neural networks as continuous relaxations over the space of programs, which can then be used to complete any partial program. This relaxed program is differentiable and can be trained end-to-end, and the resulting training loss is an approximately admissible heuristic that can guide the combinatorial search. We instantiate our approach on top of the A-star algorithm and an iteratively deepened branch-and-bound search, and use these algorithms to learn programmatic classifiers in three sequence classification tasks. Our experiments show that the algorithms outperform state-of-the-art methods for program learning, and that they discover programmatic classifiers that yield natural interpretations and achieve competitive accuracy.Comment: 9 pages, published in NeurIPS 202

    Event Generation and Statistical Sampling for Physics with Deep Generative Models and a Density Information Buffer

    Get PDF
    We present a study for the generation of events from a physical process with deep generative models. The simulation of physical processes requires not only the production of physical events, but also to ensure these events occur with the correct frequencies. We investigate the feasibility of learning the event generation and the frequency of occurrence with Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) to produce events like Monte Carlo generators. We study three processes: a simple two-body decay, the processes e+e−→Z→l+l−e^+e^-\to Z \to l^+l^- and pp→ttˉp p \to t\bar{t} including the decay of the top quarks and a simulation of the detector response. We find that the tested GAN architectures and the standard VAE are not able to learn the distributions precisely. By buffering density information of encoded Monte Carlo events given the encoder of a VAE we are able to construct a prior for the sampling of new events from the decoder that yields distributions that are in very good agreement with real Monte Carlo events and are generated several orders of magnitude faster. Applications of this work include generic density estimation and sampling, targeted event generation via a principal component analysis of encoded ground truth data, anomaly detection and more efficient importance sampling, e.g. for the phase space integration of matrix elements in quantum field theories.Comment: 24 pages, 10 figure

    SciTech News Volume 71, No. 3 (2017)

    Get PDF
    Columns and Reports From the Editor.........................3 Division News Science-Technology Division....5 Chemistry Division....................8 Conference Report, Marion E, Sparks Professional Development Award Recipient..9 Engineering Division................10 Engineering Division Award, Winners Reflect on their Conference Experience..15 Aerospace Section of the Engineering Division .....18 Architecture, Building Engineering, Construction, and Design Section of the Engineering Division................20 Reviews Sci-Tech Book News Reviews...22 Advertisements IEEE..........................................
    • …
    corecore