3,527 research outputs found

    Parametric high resolution techniques for radio astronomical imaging

    Full text link
    The increased sensitivity of future radio telescopes will result in requirements for higher dynamic range within the image as well as better resolution and immunity to interference. In this paper we propose a new matrix formulation of the imaging equation in the cases of non co-planar arrays and polarimetric measurements. Then we improve our parametric imaging techniques in terms of resolution and estimation accuracy. This is done by enhancing both the MVDR parametric imaging, introducing alternative dirty images and by introducing better power estimates based on least squares, with positive semi-definite constraints. We also discuss the use of robust Capon beamforming and semi-definite programming for solving the self-calibration problem. Additionally we provide statistical analysis of the bias of the MVDR beamformer for the case of moving array, which serves as a first step in analyzing iterative approaches such as CLEAN and the techniques proposed in this paper. Finally we demonstrate a full deconvolution process based on the parametric imaging techniques and show its improved resolution and sensitivity compared to the CLEAN method.Comment: To appear in IEEE Journal of Selected Topics in Signal Processing, Special issue on Signal Processing for Astronomy and space research. 30 page

    Designing structured tight frames via an alternating projection method

    Get PDF
    Tight frames, also known as general Welch-bound- equality sequences, generalize orthonormal systems. Numerous applications - including communications, coding, and sparse approximation- require finite-dimensional tight frames that possess additional structural properties. This paper proposes an alternating projection method that is versatile enough to solve a huge class of inverse eigenvalue problems (IEPs), which includes the frame design problem. To apply this method, one needs only to solve a matrix nearness problem that arises naturally from the design specifications. Therefore, it is the fast and easy to develop versions of the algorithm that target new design problems. Alternating projection will often succeed even if algebraic constructions are unavailable. To demonstrate that alternating projection is an effective tool for frame design, the paper studies some important structural properties in detail. First, it addresses the most basic design problem: constructing tight frames with prescribed vector norms. Then, it discusses equiangular tight frames, which are natural dictionaries for sparse approximation. Finally, it examines tight frames whose individual vectors have low peak-to-average-power ratio (PAR), which is a valuable property for code-division multiple-access (CDMA) applications. Numerical experiments show that the proposed algorithm succeeds in each of these three cases. The appendices investigate the convergence properties of the algorithm

    Unitary representations of the Galilean line group: Quantum mechanical principle of equivalence

    Full text link
    We present a formalism of Galilean quantum mechanics in non-inertial reference frames and discuss its implications for the equivalence principle. This extension of quantum mechanics rests on the Galilean line group, the semidirect product of the real line and the group of analytic functions from the real line to the Euclidean group in three dimensions. This group provides transformations between all inertial and non-inertial reference frames and contains the Galilei group as a subgroup. We construct a certain class of unitary representations of the Galilean line group and show that these representations determine the structure of quantum mechanics in non-inertial reference frames. Our representations of the Galilean line group contain the usual unitary projective representations of the Galilei group, but have a more intricate cocycle structure. The transformation formula for the Hamiltonian under the Galilean line group shows that in a non-inertial reference frame it acquires a fictitious potential energy term that is proportional to the inertial mass, suggesting the equivalence of inertial mass and gravitational mass in quantum mechanics
    corecore