48 research outputs found

    Green Wave : A Semi Custom Hardware Architecture for Reverse Time Migration

    Get PDF
    Over the course of the last few decades the scientific community greatly benefited from steady advances in compute performance. Until the early 2000's this performance improvement was achieved through rising clock rates. This enabled plug-n-play performance improvements for all codes. In 2005 the stagnation of CPU clock rates drove the computing hardware manufactures to attain future performance through explicit parallelism. Now the HPC community faces a new, even bigger challenge. So far performance gains were achieved through replication of general-purpose cores and nodes. Unfortunately, rising cluster sizes resulted in skyrocketing energy costs - a paradigm change in HPC architecture design is inevitable. In combination with the increasing costs of data movement, the HPC community started exploring alternatives like GPUs and large arrays of simple, low-power cores (e.g. BlueGene) to offer the better performance per Watt and greatest scalability. As in general science, the seismic community faces large-scale, complex computational challenges that can only be limited solved with available compute capabilities. Such challenges include the physically correct modeling of subsurface rock layers. This thesis analyzes the requirements and performance of isotropic (ISO), vertical transverse isotropic (VTI) and tilted transverse isotropic (TTI) wave propagation kernels as they appear in the Reverse Time Migration (RTM) imaging method. It finds that even with leading-edge, commercial off-the-shelf hardware, large-scale survey sizes cannot be imaged within reasonable time and power constraints. This thesis uses a novel architecture design method leveraging a hardware/software co-design approach, adopted from the mobile- and embedded market, for HPC. The methodology tailors an architecture design to a class of applications without loss of generality like in full custom designs. This approach was first applied in the Green Flash project, which proved that the co-design approach has the potential for high energy efficiency gains. This thesis presents the novel Green Wave architecture that is derived from the Green Flash project. Rather than focusing on climate codes, like Green Flash, Green Wave chooses RTM wave propagation kernels as its target application. Thus, the goal of the application-driven, co-design Green Wave approach, is to enable full programmability while allowing greater computational efficiency than general-purpose processors or GPUs by offering custom extensions to the processor's ISA and correctly sizing software-managed memories and an efficient on-chip network interconnect. The lowest level building blocks of the Green Wave design are pre-verified IP components. This minimizes the amount of custom logic in the design, which in turn reduces verification costs and design uncertainty. In this thesis three Green Wave architecture designs derived from ISO, VTI and TTI kernel analysis are introduced. Further, a programming model is proposed capable of hiding all communication latencies. With production-strength, cycle-accurate hardware simulators Green Wave's performance is benchmarked and its performance compared to leading on-market systems from Intel, AMD and NVidia. Based on a large-scale example survey, the results show that Green Wave has the potential of an energy efficiency improvement of 5x compared to x86 and 1.4x-4x to GPU-based clusters for ISO, VTI and TTI kernels

    Proceedings of the International Workshop on Medical Ultrasound Tomography: 1.- 3. Nov. 2017, Speyer, Germany

    Get PDF
    Ultrasound Tomography is an emerging technology for medical imaging that is quickly approaching its clinical utility. Research groups around the globe are engaged in research spanning from theory to practical applications. The International Workshop on Medical Ultrasound Tomography (1.-3. November 2017, Speyer, Germany) brought together scientists to exchange their knowledge and discuss new ideas and results in order to boost the research in Ultrasound Tomography

    Seismic Waves

    Get PDF
    The importance of seismic wave research lies not only in our ability to understand and predict earthquakes and tsunamis, it also reveals information on the Earth's composition and features in much the same way as it led to the discovery of Mohorovicic's discontinuity. As our theoretical understanding of the physics behind seismic waves has grown, physical and numerical modeling have greatly advanced and now augment applied seismology for better prediction and engineering practices. This has led to some novel applications such as using artificially-induced shocks for exploration of the Earth's subsurface and seismic stimulation for increasing the productivity of oil wells. This book demonstrates the latest techniques and advances in seismic wave analysis from theoretical approach, data acquisition and interpretation, to analyses and numerical simulations, as well as research applications. A review process was conducted in cooperation with sincere support by Drs. Hiroshi Takenaka, Yoshio Murai, Jun Matsushima, and Genti Toyokuni

    Helmholtz Portfolio Theme Large-Scale Data Management and Analysis (LSDMA)

    Get PDF
    The Helmholtz Association funded the "Large-Scale Data Management and Analysis" portfolio theme from 2012-2016. Four Helmholtz centres, six universities and another research institution in Germany joined to enable data-intensive science by optimising data life cycles in selected scientific communities. In our Data Life cycle Labs, data experts performed joint R&D together with scientific communities. The Data Services Integration Team focused on generic solutions applied by several communities
    corecore