109 research outputs found

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page

    Training (Overparametrized) Neural Networks in Near-Linear Time

    Get PDF
    The slow convergence rate and pathological curvature issues of first-order gradient methods for training deep neural networks, initiated an ongoing effort for developing faster second\mathit{second}-order\mathit{order} optimization algorithms beyond SGD, without compromising the generalization error. Despite their remarkable convergence rate (independent\mathit{independent} of the training batch size nn), second-order algorithms incur a daunting slowdown in the cost\mathit{cost} per\mathit{per} iteration\mathit{iteration} (inverting the Hessian matrix of the loss function), which renders them impractical. Very recently, this computational overhead was mitigated by the works of [ZMG19,CGH+19}, yielding an O(mn2)O(mn^2)-time second-order algorithm for training two-layer overparametrized neural networks of polynomial width mm. We show how to speed up the algorithm of [CGH+19], achieving an O~(mn)\tilde{O}(mn)-time backpropagation algorithm for training (mildly overparametrized) ReLU networks, which is near-linear in the dimension (mnmn) of the full gradient (Jacobian) matrix. The centerpiece of our algorithm is to reformulate the Gauss-Newton iteration as an â„“2\ell_2-regression problem, and then use a Fast-JL type dimension reduction to precondition\mathit{precondition} the underlying Gram matrix in time independent of MM, allowing to find a sufficiently good approximate solution via first\mathit{first}-order\mathit{order} conjugate gradient. Our result provides a proof-of-concept that advanced machinery from randomized linear algebra -- which led to recent breakthroughs in convex\mathit{convex} optimization\mathit{optimization} (ERM, LPs, Regression) -- can be carried over to the realm of deep learning as well

    A Survey on Intelligent Iterative Methods for Solving Sparse Linear Algebraic Equations

    Full text link
    Efficiently solving sparse linear algebraic equations is an important research topic of numerical simulation. Commonly used approaches include direct methods and iterative methods. Compared with the direct methods, the iterative methods have lower computational complexity and memory consumption, and are thus often used to solve large-scale sparse linear equations. However, there are numerous iterative methods, parameters and components needed to be carefully chosen, and an inappropriate combination may eventually lead to an inefficient solution process in practice. With the development of deep learning, intelligent iterative methods become popular in these years, which can intelligently make a sufficiently good combination, optimize the parameters and components in accordance with the properties of the input matrix. This survey then reviews these intelligent iterative methods. To be clearer, we shall divide our discussion into three aspects: a method aspect, a component aspect and a parameter aspect. Moreover, we summarize the existing work and propose potential research directions that may deserve a deep investigation

    Making Scalable Meta Learning Practical

    Full text link
    Despite its flexibility to learn diverse inductive biases in machine learning programs, meta learning (i.e., learning to learn) has long been recognized to suffer from poor scalability due to its tremendous compute/memory costs, training instability, and a lack of efficient distributed training support. In this work, we focus on making scalable meta learning practical by introducing SAMA, which combines advances in both implicit differentiation algorithms and systems. Specifically, SAMA is designed to flexibly support a broad range of adaptive optimizers in the base level of meta learning programs, while reducing computational burden by avoiding explicit computation of second-order gradient information, and exploiting efficient distributed training techniques implemented for first-order gradients. Evaluated on multiple large-scale meta learning benchmarks, SAMA showcases up to 1.7/4.8x increase in throughput and 2.0/3.8x decrease in memory consumption respectively on single-/multi-GPU setups compared to other baseline meta learning algorithms. Furthermore, we show that SAMA-based data optimization leads to consistent improvements in text classification accuracy with BERT and RoBERTa large language models, and achieves state-of-the-art results in both small- and large-scale data pruning on image classification tasks, demonstrating the practical applicability of scalable meta learning across language and vision domains

    Explaining the Adaptive Generalisation Gap

    Full text link
    We conjecture that the inherent difference in generalisation between adaptive and non-adaptive gradient methods stems from the increased estimation noise in the flattest directions of the true loss surface. We demonstrate that typical schedules used for adaptive methods (with low numerical stability or damping constants) serve to bias relative movement towards flat directions relative to sharp directions, effectively amplifying the noise-to-signal ratio and harming generalisation. We further demonstrate that the numerical stability/damping constant used in these methods can be decomposed into a learning rate reduction and linear shrinkage of the estimated curvature matrix. We then demonstrate significant generalisation improvements by increasing the shrinkage coefficient, closing the generalisation gap entirely in both Logistic Regression and Deep Neural Network experiments. Finally, we show that other popular modifications to adaptive methods, such as decoupled weight decay and partial adaptivity can be shown to calibrate parameter updates to make better use of sharper, more reliable directions
    • …
    corecore