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Abstract
The slow convergence rate and pathological curvature issues of first-order gradient methods for train-
ing deep neural networks, initiated an ongoing effort for developing faster second-order optimization
algorithms beyond SGD, without compromising the generalization error. Despite their remarkable
convergence rate (independent of the training batch size n), second-order algorithms incur a daunting
slowdown in the cost per iteration (inverting the Hessian matrix of the loss function), which renders
them impractical. Very recently, this computational overhead was mitigated by the works of [79, 23],
yielding an O(mn2)-time second-order algorithm for training two-layer overparametrized neural
networks of polynomial width m.

We show how to speed up the algorithm of [23], achieving an Õ(mn)-time backpropagation
algorithm for training (mildly overparametrized) ReLU networks, which is near-linear in the dimension
(mn) of the full gradient (Jacobian) matrix. The centerpiece of our algorithm is to reformulate
the Gauss-Newton iteration as an `2-regression problem, and then use a Fast-JL type dimension
reduction to precondition the underlying Gram matrix in time independent of M , allowing to find
a sufficiently good approximate solution via first-order conjugate gradient. Our result provides a
proof-of-concept that advanced machinery from randomized linear algebra – which led to recent
breakthroughs in convex optimization (ERM, LPs, Regression) – can be carried over to the realm of
deep learning as well.

2012 ACM Subject Classification Theory of computation → Nonconvex optimization

Keywords and phrases Deep learning theory, Nonconvex optimization

Digital Object Identifier 10.4230/LIPIcs.ITCS.2021.63

Related Version A full version of the paper is available at https://arxiv.org/abs/2006.11648.

Funding Jan van den Brand: This project has received funding from the European Research Council
(ERC) under the European Unions Horizon 2020 research and innovation program under grant
agreement No 715672. Partially supported by the Google PhD Fellowship Program.
Binghui Peng: Research supported by NSF IIS-1838154, NSF CCF-1703925 and NSF CCF-1763970.
Zhao Song: Research supported by Special Year on Optimization, Statistics, and Theoretical Machine
Learning (being led by Sanjeev Arora) at Institute for Advanced Study.
Omri Weinstein: Research supported by NSF CAREER award CCF-1844887.

Acknowledgements The author would like to thank David Woodruff for telling us the tensor trick
for computing kernel matrices and helping us improve the presentation of the paper.

© Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein;
licensed under Creative Commons License CC-BY

12th Innovations in Theoretical Computer Science Conference (ITCS 2021).
Editor: James R. Lee; Article No. 63; pp. 63:1–63:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:janvdb@kth.se
mailto:bp2601@columbia.edu
mailto:zhaos@ias.edu
mailto:omri@cs.columbia.edu
https://doi.org/10.4230/LIPIcs.ITCS.2021.63
https://arxiv.org/abs/2006.11648
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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1 Introduction

Understanding the dynamics of gradient-based optimization of deep neural networks has been
a central focal point of theoretical machine learning in recent years [49, 81, 80, 48, 31, 4, 5, 3,
13, 58, 9, 67, 27, 39, 22]. This line of work led to a remarkable rigorous understanding of the
generalization, robustness and convergence rate of first-order (SGD-based) algorithms, which
are the standard choice for training DNNs. By contrast, the computational complexity of
implementing gradient-based training algorithms (e.g., backpropagation) in such non-convex
landscape is less understood, and gained traction only recently due to the overwhelming size
of training data and complexity of network design [55, 32, 51, 23, 79].

The widespread use first-order methods such as (stochastic) gradient descent in training
DNNs is explained, to a large extent, by its computational efficiency – recalculating the
gradient of the loss function at each iteration is simple and cheap (linear in the dimension
of the full gradient), let alone with the advent of minibatch random sampling [37, 23].
Nevertheless, first-order methods have a slow rate of convergence in non-convex settings
(typically Ω(poly(n) log(1/ε)) for overparametrized networks, see e.g., [79]) for reducing the
training error below ε, and it is increasingly clear that SGD-based algorithms are becoming
a real bottleneck for many practical purposes. This drawback initiated a substantial effort
for developing fast training methods beyond SGD, aiming to improve its convergence rate
without compromising the generalization error [16, 53, 55, 32, 44, 59, 23, 79].

Second-order gradient algorithms (which employ information about the Hessian of the loss
function), pose an intriguing computational tradeoff in this context: On one hand, they are
known to converge extremely fast, at a rate independent of the input size (i.e., only O(log 1/ε)
iterations [79]), and offer a qualitative advantage in overcoming pathological curvature issues
that arise in first-order methods, by exploiting the local geometry of the loss function. This
feature implies another practical advantage of second order methods, namely, that they do
not require tuning the learning rate [23, 79]. On the other hand, second-order methods
have a prohibitive cost per iteration, as they involve inverting a dynamically-changing dense
Hessian matrix. This drawback explains the scarcity of second order methods in large scale
non-convex optimization, in contrast to its popularity in the convex setting.

The recent works of [23, 79] addressed the computational bottleneck of second-order
algorithms in optimizing deep neural nets, and presented a training algorithm for overpara-
metrized neural networks with smooth (resp. ReLU) activations, whose running time is
O(mn2), where m is the width of the neural network, and n is the size of the training data
in Rd. The two algorithms, which achieve essentially the same running time, are based on
the classic Gauss-Newton algorithm (resp. “Natural gradient” algorithm) combined with the
recent introduction of Neural Tangent Kernels (NTK) [38]. The NTK formulation utilizes a
local-linearization of the loss function for overparametrized neural networks, which reduces
the optimization problem of DNNs to that of a kernel regression problem: The main insight
is that when the network is overparametrized, i.e., sufficiently wide m & n4 ([67]), the neural
network becomes locally convex and smooth, hence the problem is equivalent to a kernel
regression problem with respect to the NTK function [38], and therefore solving the latter
via (S)GD is guaranteed to converge to a global minimum. The training algorithm of [23]
draws upon this equivalence, by designing a second-order variation of the Gauss-Newton
algorithm (termed “Gram-Gauss-Newton”), yielding the aforementioned runtime for smooth
activation functions.

Single vs. Multilayer Network Training. Following [23, 79], we focus on two-layer (i.e.,
single hidden-layer) neural networks. While our algorithm extends to the multilayer case
(with a slight comprise on the width dependence), we argue that, as far as training time,
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the two-layer case is not only the common case, but in fact the only interesting case for
constant training error: Indeed, in the multilayer case (L ≥ 2), we claim that the mere
cost of feed-forward computation of the network’s output is already Ωε(m2nL). Indeed,
the total number of parameters of L-layer networks is M = (L− 1)m2 +md, and as such,
feed-forward computation requires, at the very least, computing a single product of m×m
(dense) matrices W with a m × 1 vector for each training data, which already costs m2n

time:

ŷi = a>σL

WL︸︷︷︸
m×m

σL−1

WL−1︸ ︷︷ ︸
m×m

. . . σ1(W1︸︷︷︸
m×d

xi)

 .

Therefore, sublinear-time techniques (as we present) appear futile in the case of multi-
layer overparametrized networks, where it is possible to achieve linear time (in M) using
essentially direct (lossless) computation (see next subsection). It may still be possible to
use sublinear algorithms to improve the running time to O(m2nL+ poly(n)), though in for
overparametrized DNNs this seems a minor saving.

1.1 Our Result
Our main result is a quadratic speedup to the algorithm of [23], yielding an essentially
optimal training algorithm for overparametrized two-layer neural networks. Moreover, in
contrast to [23], our algorithm applies to the more complex and realistic case of ReLU
activation functions. Our main result is shown below (For a more comprehensive comparison,
see Table 1 below and references therein).

I Theorem 1. Suppose the width of a two layer ReLU neural network satisfies

m = Ω(max{λ−4n4, λ−2n2d log(n/δ)}),

where λ > 0 denotes the minimum eigenvalue of the Gram matrix (see Eq. (5) below), n is
the number of training data, d is the input dimension. Then with probability 1− δ over the
random initialization of neural network and the randomness of the training algorithm, our
algorithm achieves

‖ft+1 − y‖2 ≤
1
2‖ft − y‖2.

The computational cost of each iteration is Õ(mnd+ n3), and the running time for reducing
the training loss to ε is Õ((mnd+ n3) log(1/ε)). Using fast matrix-multiplication, the total
running time can be further reduced to Õ((mnd+ nω) log(1/ε)).1

I Remark 2. We stress that that our algorithm runs in (near) linear time even for networks
with width m & n2 and in fact, under the common belief that ω = 2, this is true so long as
m & n (!). This means that the bottleneck for linear-time training of small-width DNNs is
not computational, but rather analytic: The overparametrization requirements (m & n4) in
Theorem 1 stems from current-best analysis of the convergence guarantees of (S)GD-based
training of ReLU networks, and any improvement on these bounds would directly yield
linear-time training for thinner networks using our algorithm.

1 Here, ω < 2.373 denotes the fast matrix-multiplication (FMM) constant for multiplying two n × n
matrices [73, 46].
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Table 1 Summary of state-of-art algorithms for training two-layer neural networks. n denotes
the training batch size (number of input data points in Rd) and ε denote the desired accuracy of
the training loss. For simplicity, here we assume d = O(1) and omit poly(logn, 1/λ) terms. The
result of [23] applies only to smooth activation gates and not to ReLU networks. Comparison to
SGD algorithms is omitted from this table since they require a must stronger assumption on the
width m for convergence, and have slower convergence rate than GD [48, 4, 5].

Ref. Method #Iters Cost/iter Width ReLU?
[31] Gradient descent O(n2 log(1/ε)) O(mn) Ω(n6) Yes
[67] Gradient descent O(n2 log(1/ε)) O(mn) Ω(n4) Yes
[77] Adaptive gradient descent O(n log(1/ε)) O(mn) Ω(n6) Yes
[23] Gram-Gaussian-Newton (GGN) O(log log(1/ε)) O(mn2) Ω(n4) No
[23] Batch-GGN O(n2 log(1/ε)) O(m) Ω(n18) No
[79] Natural gradient descent O(log(1/ε)) O(mn2) Ω(n4) Yes
Ours O(log(1/ε)) O(mn) Ω(n4) Yes

Techniques. The majority of ML optimization literature on overparametrized network
training is dedicated to understanding and minimizing the number of iterations of the
training process [79, 23] as opposed to the cost per iteration, which is the focus of our paper.
Our work shows that it is possible to harness the toolbox of randomized linear algebra –
which was heavily used in the past decade to reduce the cost of convex optimization tasks
– in the nonconvex setting of deep learning as well. A key ingredient in our algorithm is
linear sketching, where the main idea is to carefully compress a linear system underlying
an optimization problem, in a way that preserves a good enough solution to the problem
yet can be solved much faster in lower dimension. This is the essence of the celebrated
Sketch-and-Solve (S&S) paradigm [24]. As we explain below, our main departure from the
classic S&S framework (e.g., [59]) is that we cannot afford to directly solve the underlying
compressed regression problem (as this approach turns out to be prohibitively slow for our
application). Instead, we use sketching (or sampling) to facilitate fast preconditioning of
linear systems (in the spirit of [68, 43, 62, 74]), which in turn enables to solve the compressed
regression problem to very high accuracy via first-order conjugate gradient descent. This
approach essentially decouples the sketching error from the final precision error of the Gauss-
Newton step, enabling a much smaller sketch size. We believe this (somewhat unconventional)
approach to non-convex optimization is the most enduring message of our work.

1.2 Related Work
Second-order methods in non-convex optimization. Despite the prevalence of first order
methods in deep learning applications, there is a vast body of ongoing work [18, 17, 55,
35, 36, 23, 79] aiming to design more scalable second-order algorithms that overcome the
limitations of (S)GD for optimizing deep models. Grosse and Martens [55, 35] designed
the K-FAC method, where the idea is to use Kronecker-factors to approximate the Fisher
information matrix, combined with natural gradient descent. This approach has been further
explored and extended by [78, 34, 54]. Gupta et al. [36] designed the “Shampoo method”,
based on the idea of structure-aware preconditioning. Anil et al. [7] further validate the
practical perfromance of Shampoo and incorporated it into hardware. However, despite
sporadic empirical evidence of such second-order methods (e.g., K-FAC and Shampoo), these
methods generally lack a provable theoretical guarantee on the performance when applied to
deep neural networks. Furthermore, in the overparametrized setting, their cost per-iteration
in general is at least Ω(mn2).
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We remark that in the convex setting, theoretical guarantees for large-scale second-order
algorithms have been established (e.g.,[1, 59, 56, 21]), but such rigorous analysis in non-
convex setting was only recently proposed ([23, 79]). Our algorithm bears some similarities
to the NewtonSketch algorithm of [59], which also incorporates sketching into second order
Newton methods. A key difference, however, is that the algorithm of [59] works only for
convex problems, and requires access to (∇2f(x))1/2 (i.e., the square-root of the Hessian).
Most importantly, though, [59] use the standard (black-box) Sketch-and-Solve paradigm to
reduce the computational cost, while this approach incurs large computation overhead in our
non-convex setting. By contrast, we use sketching as a subroutine for fast preconditioning.
As a by-product, in the full version of this paper we show how to apply our techniques to
give a substantial improvement over [59] in the convex setting.

The aforementioned works of [79] and [23] are most similar in spirit to ours. Zhang et
al. [79] analyzed the convergence rate of Natural gradient descent algorithms for two-layer
(overparametrized) neural networks, and showed that the number of iterations is independent
of the training data size n (essentially log(1/ε)). They also demonstrate similar results for the
convergence rate of K-FAC in the overparametrized regime, albeit with larger requirement
on the width m. Another downside of K-FAC is the high cost per iteration (∼ mn2). Cai et
al. [23] analyzed the convergence rate of the so-called Gram-Gauss-Newton algorithm for
training two-layer (overparametrized) neural network with smooth activation gates. They
proved a quardratic (i.e., doubly-logarithnmic) convergence rate in this setting (log(log(1/ε)))
albeit with O(mn2) cost per iteration. It is noteworthy that this quadratic convergence
rate analysis does not readily extend to the more complex and realistic setting of ReLU
activation gates, which is the focus of our work. [23] also prove bounds on the convergence of
“batch GGN”, showing that it is possible to reduce the cost-per-iteration to m, at the price of
O(n2 log(1/ε)) iterations, for very heavily overparametrized DNNs (currently m = Ω(n18)).

Sketching. The celebrated “Sketch and Solve” (S&S) paradigm [24] was originally developed
to speed up the cost of solving linear regression and low-rank approximation problems. This
dimensionality-reduction technique has since then been widely developed and applied to both
convex and non-convex numerical linear algebra problems [20, 61, 76, 6, 14, 12, 72, 28, 65,
64, 15], as well as machine-learning applications [10, 11, 50, 75]. The most direct application
of the sketch-and-solve technique is overconstrained regression problems, where the input is
a linear system [A, b] ∈ Rn×(d+1) with n� d, and we aim to find an (approximate) solution
x̂ ∈ Rd so as to minimize the residual error ‖Ax̂− b‖2.

In the classic S&S paradigm, the underlying regression solver is treated as a black box,
and the computational savings comes from applying it on a smaller compressed matrix. Since
then, sketching (or sampling) has also been used in a non-black-box fashion for speeding-
up optimization tasks, e.g., as a subroutine for preconditioning [74, 62, 68, 43] or fast
inverse-maintenance in Linear Programming solvers, semi-definite programming, cutting
plane methods, and empirical-risk minimization [25, 42, 40, 41, 47].

Overparametrization in neural networks. A long and active line of work in recent deep
learning literature has focused on obtaining rigorous bounds on the convergence rate of various
local-search algorithms for optimizing DNNs [48, 31, 4, 5, 8, 9, 67, 39]. The breakthrough
work of Jacob et al. [38] and subsequent developments2 introduced the notion of neural tangent
kernels (NTK), implying that for wide enough networks (m & n4), (stochastic) gradient
descent provably converges to an optimal solution, with generalization error independent of
the number of network parameters.

2 For a complete list of references, we refer the readers to [8, 9].

ITCS 2021
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2 Technical Overview

We now provide a streamlined overview of our main result, Theorem 1. As discussed in the
introduction, our algorithm extends to multi-layer ReLU networks , though we focus on the
two-layer case (one-hidden layer), which is the most interesting case where one can indeed
hope for linear training time.

The main, and most expensive step, of the GGN (or natural gradient descent) algorithms
[23, 79] is multiplying, in each iteration t, the inverse of the Gram matrix Gt := JtJ

>
t with

the Jacobian matrix Jt ∈ Rn×m, whose ith row contains the gradient of the m = md network
gates w.r.t the ith datapoint xi (in our case, under ReLU activation).

Naiively computing Gt would already take mdn2 time, however, the tensor product
structure of the Jacobian J in fact allows to compute Gt in n · Tmat(m, d, n)� mn2 time,
where Tmat(m, d, n) is the cost of fast rectangular matrix multiplication[73, 46, 33].3 Since
the Gram-Gauss-Newton (GGN) algorithm requires O(log log 1/ε) iterations to converge to an
ε-global minimum of the `2 loss [23], this observation yields an O(n · Tmat(m, d, n) log log 1/ε)
total time algorithm for reducing the training loss below ε. While already nontrivial, this is
still far from linear running time (� mdn).

We show how to carry out each Gauss-Newton iteration in time Õ(mnd+n3), at the price
of slightly compromising the number of iterations to O(log 1/ε), which is inconsequential
for the natural regime of constant dimension d and constant ε4. Our first key step is
to reformulate the Gauss-Newton iteration (multiplying G−1

t by the error vector) as an
`2-regression problem:

min
gt

‖JtJ>t gt − (ft − y)‖2 (1)

where (ft − y) is the training error with respect to the network’s output and the training
labels y. Since the Gauss-Newton method is robust to small perturbation errors (essentially
[71, 70]), our analysis shows that it is sufficient to find an approximate solution g′t such that
J>t g

′
t satisfies

‖JtJ>t g′t − y‖2 ≤ γ‖y‖2, for γ ≈ 1/n. (2)

The benefit of this reformulation is that it allows to use linear sketching to first compress
the linear system, significantly reducing the dimension of the optimization problem and
thereby the cost of finding a solution, at the price of a small error in the found solution
(this is the essence of the sketch-and-solve paradigm [24]). Indeed, a (variation of) the
Fast-JL sketch [2, 52] guarantees that we can multiply the matrix J>t ∈ Rm×n by a much
smaller Õ(n/δ2)×m matrix S, such that (i) the multiplication takes near-linear time Õ(mn)
time (using the FFT algorithm), and (ii) SJ>t is a δ-spectral approximation of J>t (i.e.,
‖JtS>SJ>t x‖2 = (1± δ)‖Gtx‖2 for every x). Since both computing and inverting the matrix
G̃t := JtS

>SJ>t takes Õ(n3/δ2) time, the overall cost of finding a δ-approximate solution to

3 To see this, observe that the kronecker-product structure of J (here J ∈ Rn×md can be constructed
from an n×m matrix and an n×d matrix) allows computing Jh for any h ∈ Rmd using fast rectangular
matrix multiplication in time Tmat(m, d, n) which is near linear time in the dimension of J and h (that
is, n×m+ n× d for J and md for h) so long as d ≤ nα = n0.31 [33], hence computing G = JJ> can
be done using n independent invocations of the aforementioned subroutine, yielding n · Tmat(m, d, n) as
claimed.

4 We also remark that this slowdown in the convergence rate is also a consequence of a direct extension
of the analysis in [23] to ReLU activation functions.
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the regression problem becomes at most Õ(mn+ n3/δ2). Alas, as noted in Equation (2), the
approximation error of the found solution must be polynomially small γ ∼ 1/n in order to
guarantee the desired convergence rate (i.e., constant decrease in training error per iteration).
This means that we must set δ ∼ γ ∼ 1/n, hence the cost of the naiive “sketch-and-solve”
algorithm would be at least Õ(n3/δ2) = Õ(n5), which is a prohibitively large overhead in
both theory and practice (and in particular, no longer yields linear runtime whenever m� n4

which is the current best overparametrization guarantee [67]). Since the O(1/δ2) dependence
of the JL embedding is known to be tight in general [45], this means we need to take a more
clever approach to solve the regression (1). This is where our algorithm departs from the
naiive sketch-and-solve method, and is the heart of our work.

Our key idea is to use dimension reduction – not to directly invert the compressed matrix
– but rather to precondition it quickly. More precisely, our approach is to use a (conjugate)
gradient-descent solver for the regression problem itself, with a fast preconditioning step,
ensuring exponentially faster convergence to very high (polynomially small) accuracy. Indeed,
conjugate gradient descent is guaranteed to find a γ-approximate solution to a regression
problem minx ‖Ax− b‖2 in O(

√
κ log(1/γ)) iterations, where κ(A) is the condition number

of A (i.e., the ratio of maximum to minimum eigenvalue). Therefore, if we can ensure that
κ(Gt) is small, then we can γ-solve the regression problem in ∼ mn log(1/γ) = Õ(mn) time,
since the per-iteration cost of first-order SGD is linear (∼ mn).

The crucial advantage of our approach is that it decouples the sketching error from the
final precision of the regression problem: Unlike the usual “sketch-and-solve” method, where
the sketching error δ directly affects the overall precision of the solution to (2), here δ only
affects the quality of the preconditioner (i.e., the ratio of max/min singular values of the
sketch G̃t), hence it suffices to take a constant sketching error δ = 0.1 (say), while letting
the SGD deal with the final precision (at it has logarithmic dependence on γ).

Indeed, by setting the sketching error to δ = 0.1 (say), the resulting matrix G̃t = JtS
>SJ>t

is small enough (n × Õ(n)) that we can afford running a standard (QR) algorithm to
precondition it, at another Õ(n3) cost per iteration. The output of this step is a matrix
G̃′t := Prec(G̃t) with a constant condition number κ(G̃′t) which preserves G̃′tx ≈`2 G̃t
up to (1 ± δ)2 relative error. At this point, we can run a (conjugate) gradient descent
algorithm, which is guaranteed to find a γ ≈ 1/n approximate solution to (1) in time
Õ((mn log((1 + δ)/γ) + n3), as desired.

We remark that, by definition, the preconditioning step (on the JL sketch) does not
preserve the eigen-spectrum of Gt, which is in fact necessary to guarantee the fast convergence
of the Gauss-Newton iteration . The point is that this preconditioning step is only preformed
as a local subroutine so as to solve the regression problem, and does not affect the convergence
rate of the outer loop.

3 Preliminaries

3.1 Model and Problem Setup
We denote by n the number of data points in the training batch, and by d the data
dimension/feature-space (i.e., xi ∈ Rd). We denote by m the width of neural network, and
by L the number of layers and by M the number of parameters. We assume the data has
been normalized, i.e., ‖x‖2 = 1. We begin with the two-layer neural network in the following
section, and then extend to multilayer networks. Consider a two-layer ReLU activated neural
network with m neurons in the (single) hidden layer:

f(W,x, a) = 1√
m

m∑
r=1

arφ(w>r x),

ITCS 2021
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where x ∈ Rd is the input, w1, · · · , wm ∈ Rd are weight vectors in the first layer, a1, · · · , am ∈
R are weights in the second layer. For simplicity, we consider a ∈ {−1,+1}m is fixed over
all the iterations, this is natural in deep learning theory [48, 31, 4, 3, 67]. Recall the ReLU
function φ(x) = max{x, 0}. Therefore for r ∈ [m], we have

∂f(W,x, a)
∂wr

= 1√
m
arx1w>

r x≥0. (3)

Given n input data points (x1, y1), (x2, y2), · · · (xn, yn) ∈ Rd × R. We define the objective
function L as follows

L(W ) = 1
2

n∑
i=1

(yi − f(W,xi, a))2.

We can compute the gradient of L in terms of wr

∂L(W )
∂wr

= 1√
m

n∑
i=1

(f(W,xi, a)− yi)arxi1w>
r xi≥0. (4)

We define the prediction function ft : Rd×n → Rn at time t as follow

ft =


1√
m

∑m
r=1 ar · φ(〈wr(t), x1〉)

1√
m

∑m
r=1 ar · φ(〈wr(t), x2〉)

...
1√
m

∑m
r=1 ar · φ(〈wr(t), xn〉)


where Wt = [w1(t)>, w2(t)>, · · · , wm(t)>]> ∈ Rmd and X = [x1, x2, · · · , xn] ∈ Rd×n .

For each time t, the Jacobian matrix J ∈ Rn×md is defined via the following formulation:

Jt = 1√
m


a1x
>
1 1〈w1(t),x1〉≥0 a2x

>
1 1〈w2(t),x1〉≥0 · · · amx

>
1 1〈wm(t),x1〉≥0

a1x
>
2 1〈w1(t),x2〉≥0 a2x

>
2 1〈w2(t),x2〉≥0 · · · amx

>
2 1〈wm(t),x2〉≥0

...
...

. . .
...

a1x
>
n 1〈w1(t),xn〉≥0 a2x

>
n 1〈w2(t),xn〉≥0 . . . amx

>
n 1〈wm(t),xn〉≥0

 .
The Gram matrix Gt is defined as Gt = JtJ

>
t , whose (i, j)-th entry is

〈
f(Wt,xi)
∂W ,

f(Wt,xj)
∂W

〉
.

The crucial observation of [38, 31] is that the asymptotic of the Gram matrix equals a positive
semidefinite kernel matrix K ∈ Rn×n, where

K(xi, xj) = E
w∈N (0,1)

[
x>i xj1〈w,xi〉≥0,〈w,xj〉≥0

]
. (5)

I Assumption 3. We assume the least eigenvalue λ of the kernel matrix K defined in Eq. (5)
satisfies λ > 0.

3.2 Subspace embedding
Subspace embedding was first introduced by Sarlós [63], it has been extensively used in
numerical linear algebra field over the last decade [24, 57, 19, 66]. For a more detailed survey,
we refer the readers to [74]. The formal definition is:

I Definition 4 (Approximate subspace embedding, ASE [63]). A (1± ε) `2-subspace embedding
for the column space of an N × k matrix A is a matrix S for which for all x ∈ Rk,
‖SAx‖2

2 = (1 ± ε)‖Ax‖2
2. Equivalently, ‖I − U>S>SU‖2 ≤ ε, where U is an orthonormal

basis for the column space of A.
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Combining Fast-JL sketching matrix [2, 30, 69, 29, 52, 60] with a classical ε-net argu-
ment [74] gives subspace embedding,

I Lemma 5 (Fast subspace embedding [52, 74]). Given a matrix A ∈ RN×k with N = poly(k),
then we can compute a S ∈ Rkpoly(log(k/δ))/ε2×k that gives a subspace embedding of A with
probability 1− δ, i.e., with probability 1− δ, we have :

‖SAx‖2 = (1± ε)‖Ax‖2

holds for any x ∈ Rn, ‖x‖2 = 1. Moreover, SA can be computed in O(Nk · poly log k) time.

4 Our Algorithm

Our main algorithm is shown in Algorithm 1. We have the following convergence result of
our algorithm.

I Theorem 6. Suppose the width of a ReLU neural network satisfies

m = Ω(max{λ−4n4, λ−2n2d log(16n/δ)}),

then with probability 1−δ over the random initialization of neural network and the randomness
of the training algorithm, our algorithm (procedure FasterTwoLayer in Algorithm 1)
achieves

‖ft+1 − y‖2 ≤
1
2‖ft − y‖2.

The computation cost in each iteration is Õ(mnd+ n3), and the running time for reducing
the training loss to ε is Õ((mnd+ n3) log(1/ε)). Using fast matrix-multiplication, the total
running time can be further reduced to Õ((mnd+ nω) log(1/ε)).

Algorithm 1 Faster algorithm for two-layer neural network.

1: procedure FasterTwoLayer() . Theorem 6
2: W0 is a random Gaussian matrix . W0 ∈ Rmd
3: while t < T do
4: Compute the Jacobian matrix Jt . Jt ∈ Rn×md
5: Find an ε0 approximate solution using Algorithm 2 . ε0 ∈ (0, 1

6
√
λ/n]

min
gt

‖JtJ>t gt − (ft − y)‖2 (6)

6: Update Wt+1 ←Wt − J>t gt
7: t← t+ 1
8: end while
9: end procedure

The main difference between [23, 79] and our algorithm is that we perform an approximate
Newton update (see line 6). The crucial observation here is that the Newton method is robust
to small loss, thus it suffices to present a fine approximation. This observation is well-known
in the convex optimization but unclear to the non-convex (but overparameterized) neural
network setting. Another crucial observation is that instead of directly approximating the
Gram matrix, it is suffices to approximate (JtJ>t )−1gt = G−1

t gt. Intuitively, this follows from

J>t gt ≈ Jt(JtJ>t )−1(ft − y) = (J>t Jt)†Jt(ft − y),

ITCS 2021



63:10 Training (Overparametrized) Neural Networks

where (J>t Jt)† denotes the pseudo-inverse of J>t Jt and the last term is exactly the Newton
update. This observation allows us to formulate the problem a regression problem (see
Eq. (6)), on which we can introduce techniques from randomize linear algebra and develop
fast algorithm that solves it in near linear time.

4.1 Fast regression solver

Algorithm 2 Fast regression.

1: procedure FastRegression(A, ε) . Lemma 7
2: . A ∈ RN×k is a full rank matrix, ε ∈ (0, 1/2) is the desired precision
3: Compute a subspace embedding SA . S ∈ Rkpoly(log k)×k

4: Compute R such that SAR orthonormal columns via QR decomposition . R ∈ Rk×k
5: z0 ← ~0 ∈ Rk
6: while ‖A>ARzt − y‖2 ≥ ε do
7: zt+1 ← zt − (R>A>AR)>(R>A>ARzt −R>y)
8: end while
9: return Rzt

10: end procedure

The core component of our algorithm is a fast regression solver (shown in Algorithm 2).
The regression solver provides an approximate solution to minx ‖A>Ax−y‖ where A ∈ RN×k
(N � k). We perform preconditioning on the matrix of A>A (line 3 – 4) and use gradient
descent to derive an approximation solution (line 6 – 8).

I Lemma 7. Let N = Ω(kpoly(log k)). Given a matrix A ∈ RN×k, let κ denote the condition
number of A 5, consider the following regression problem

min
x∈Rk

‖A>Ax− y‖2. (7)

Using procedure FastRegression (in Algorithm 2), with probability 1− δ, we can compute
an ε-approximate solution x′ satisfying

‖A>Ax′ − y‖2 ≤ ε‖y‖2

in Õ
(
Nk log(κ/ε) + k3) time.

Speedup in Convex Optimization. It should come as no surprise that our techniques can
help accelerating a broad class of solvers in convex optimization problems as well. In the
full version of this paper, we elaborate on this application, and in particular show how our
technique improves the runtime of the “Newton-Sketch” algorithm of [59].

5 Conclusion and Open Problems

Our work provides a computationally-efficient (near-linear time) second-order algorithm for
training sufficiently overparametrized two-layer neural network, overcoming the drawbacks
of traditional first-order gradient algorithms. Our main technical contribution is developing
a faster regression solver which uses linear sketching for fast preconditioning (in time

5 κ = σmax(A)/σmin(A)
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independent of the network width). As such, our work demonstrates that the toolbox of
randomized linear algebra can substantially reduce the computational cost of second-order
methods in non-convex optimization, and not just in the convex setting for which it was
originally developed (e.g., [59, 74, 25, 42, 40, 41, 47]).

Finally, we remark that, while the running time of our algorithm is Õ(Mn + n3) (or
O(Mn+nω) using FMM), it is no longer (near) linear for networks with parameters M ≤ n2

(resp. M . nω−1). While it is widely believed that ω = 2 [26], FMM algorithms are
impractical at present, and it would therefore be very interesting to improve the extra
additive term from n3 to n2+o(1) (which seems best possible for dense n× n matrices), or
even to n3−ε using a practically viable algorithm. Faster preconditioners seem key to this
avenue.
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