1,095 research outputs found

    Data assimilation in the low noise regime with application to the Kuroshio

    Full text link
    On-line data assimilation techniques such as ensemble Kalman filters and particle filters lose accuracy dramatically when presented with an unlikely observation. Such an observation may be caused by an unusually large measurement error or reflect a rare fluctuation in the dynamics of the system. Over a long enough span of time it becomes likely that one or several of these events will occur. Often they are signatures of the most interesting features of the underlying system and their prediction becomes the primary focus of the data assimilation procedure. The Kuroshio or Black Current that runs along the eastern coast of Japan is an example of such a system. It undergoes infrequent but dramatic changes of state between a small meander during which the current remains close to the coast of Japan, and a large meander during which it bulges away from the coast. Because of the important role that the Kuroshio plays in distributing heat and salinity in the surrounding region, prediction of these transitions is of acute interest. Here we focus on a regime in which both the stochastic forcing on the system and the observational noise are small. In this setting large deviation theory can be used to understand why standard filtering methods fail and guide the design of the more effective data assimilation techniques. Motivated by our analysis we propose several data assimilation strategies capable of efficiently handling rare events such as the transitions of the Kuroshio. These techniques are tested on a model of the Kuroshio and shown to perform much better than standard filtering methods.Comment: 43 pages, 12 figure

    An information field theory approach to Bayesian state and parameter estimation in dynamical systems

    Full text link
    Dynamical system state estimation and parameter calibration problems are ubiquitous across science and engineering. Bayesian approaches to the problem are the gold standard as they allow for the quantification of uncertainties and enable the seamless fusion of different experimental modalities. When the dynamics are discrete and stochastic, one may employ powerful techniques such as Kalman, particle, or variational filters. Practitioners commonly apply these methods to continuous-time, deterministic dynamical systems after discretizing the dynamics and introducing fictitious transition probabilities. However, approaches based on time-discretization suffer from the curse of dimensionality since the number of random variables grows linearly with the number of time-steps. Furthermore, the introduction of fictitious transition probabilities is an unsatisfactory solution because it increases the number of model parameters and may lead to inference bias. To address these drawbacks, the objective of this paper is to develop a scalable Bayesian approach to state and parameter estimation suitable for continuous-time, deterministic dynamical systems. Our methodology builds upon information field theory. Specifically, we construct a physics-informed prior probability measure on the function space of system responses so that functions that satisfy the physics are more likely. This prior allows us to quantify model form errors. We connect the system's response to observations through a probabilistic model of the measurement process. The joint posterior over the system responses and all parameters is given by Bayes' rule. To approximate the intractable posterior, we develop a stochastic variational inference algorithm. In summary, the developed methodology offers a powerful framework for Bayesian estimation in dynamical systems

    Enhanced particle PHD filtering for multiple human tracking

    Get PDF
    PhD ThesisVideo-based single human tracking has found wide application but multiple human tracking is more challenging and enhanced processing techniques are required to estimate the positions and number of targets in each frame. In this thesis, the particle probability hypothesis density (PHD) lter is therefore the focus due to its ability to estimate both localization and cardinality information related to multiple human targets. To improve the tracking performance of the particle PHD lter, a number of enhancements are proposed. The Student's-t distribution is employed within the state and measurement models of the PHD lter to replace the Gaussian distribution because of its heavier tails, and thereby better predict particles with larger amplitudes. Moreover, the variational Bayesian approach is utilized to estimate the relationship between the measurement noise covariance matrix and the state model, and a joint multi-dimensioned Student's-t distribution is exploited. In order to obtain more observable measurements, a backward retrodiction step is employed to increase the measurement set, building upon the concept of a smoothing algorithm. To make further improvement, an adaptive step is used to combine the forward ltering and backward retrodiction ltering operations through the similarities of measurements achieved over discrete time. As such, the errors in the delayed measurements generated by false alarms and environment noise are avoided. In the nal work, information describing human behaviour is employed iv Abstract v to aid particle sampling in the prediction step of the particle PHD lter, which is captured in a social force model. A novel social force model is proposed based on the exponential function. Furthermore, a Markov Chain Monte Carlo (MCMC) step is utilized to resample the predicted particles, and the acceptance ratio is calculated by the results from the social force model to achieve more robust prediction. Then, a one class support vector machine (OCSVM) is applied in the measurement model of the PHD lter, trained on human features, to mitigate noise from the environment and to achieve better tracking performance. The proposed improvements of the particle PHD lters are evaluated with benchmark datasets such as the CAVIAR, PETS2009 and TUD datasets and assessed with quantitative and global evaluation measures, and are compared with state-of-the-art techniques to con rm the improvement of multiple human tracking performance
    • …
    corecore