38 research outputs found

    Combining Experience Replay with Exploration by Random Network Distillation

    Full text link
    Our work is a simple extension of the paper "Exploration by Random Network Distillation". More in detail, we show how to efficiently combine Intrinsic Rewards with Experience Replay in order to achieve more efficient and robust exploration (with respect to PPO/RND) and consequently better results in terms of agent performances and sample efficiency. We are able to do it by using a new technique named Prioritized Oversampled Experience Replay (POER), that has been built upon the definition of what is the important experience useful to replay. Finally, we evaluate our technique on the famous Atari game Montezuma's Revenge and some other hard exploration Atari games.Comment: 8 pages, 6 figures, accepted as full-paper at IEEE Conference on Games (CoG) 201

    Continual Reinforcement Learning in 3D Non-stationary Environments

    Full text link
    High-dimensional always-changing environments constitute a hard challenge for current reinforcement learning techniques. Artificial agents, nowadays, are often trained off-line in very static and controlled conditions in simulation such that training observations can be thought as sampled i.i.d. from the entire observations space. However, in real world settings, the environment is often non-stationary and subject to unpredictable, frequent changes. In this paper we propose and openly release CRLMaze, a new benchmark for learning continually through reinforcement in a complex 3D non-stationary task based on ViZDoom and subject to several environmental changes. Then, we introduce an end-to-end model-free continual reinforcement learning strategy showing competitive results with respect to four different baselines and not requiring any access to additional supervised signals, previously encountered environmental conditions or observations.Comment: Accepted in the CLVision Workshop at CVPR2020: 13 pages, 4 figures, 5 table

    Deep Reinforcement Learning on a Budget: 3D Control and Reasoning Without a Supercomputer

    Get PDF
    An important goal of research in Deep Reinforcement Learning in mobile robotics is to train agents capable of solving complex tasks, which require a high level of scene understanding and reasoning from an egocentric perspective. When trained from simulations, optimal environments should satisfy a currently unobtainable combination of high-fidelity photographic observations, massive amounts of different environment configurations and fast simulation speeds. In this paper we argue that research on training agents capable of complex reasoning can be simplified by decoupling from the requirement of high fidelity photographic observations. We present a suite of tasks requiring complex reasoning and exploration in continuous, partially observable 3D environments. The objective is to provide challenging scenarios and a robust baseline agent architecture that can be trained on mid-range consumer hardware in under 24h. Our scenarios combine two key advantages: (i) they are based on a simple but highly efficient 3D environment (ViZDoom) which allows high speed simulation (12000fps); (ii) the scenarios provide the user with a range of difficulty settings, in order to identify the limitations of current state of the art algorithms and network architectures. We aim to increase accessibility to the field of Deep-RL by providing baselines for challenging scenarios where new ideas can be iterated on quickly. We argue that the community should be able to address challenging problems in reasoning of mobile agents without the need for a large compute infrastructure
    corecore