14,911 research outputs found

    Envisioning Future Playful Interactive Environments for Animals

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-981-287-546-4_6Play stands as one of the most natural and inherent behavior among the majority of living species, specifically humans and animals. Human play has evolved significantly over the years, and so have done the artifacts which allow us to play: from children playing tag games without any tools other than their bodies, to modern video games using haptic and wearable devices to augment the playful experience. However, this ludic revolution has not been the same for the humans’ closest companions, our pets. Recently, a new discipline inside the human–computer interaction (HCI) community, called animal–computer interaction (ACI), has focused its attention on improving animals’ welfare using technology. Several works in the ACI field rely on playful interfaces to mediate this digital communication between animals and humans. Until now, the development of these interfaces only comprises a single goal or activity, and its adaptation to the animals’ needs requires the developers’ intervention. This work analyzes the existing approaches, proposing a more generic and autonomous system aimed at addressing several aspects of animal welfare at a time: Intelligent Playful Environments for Animals. The great potential of these systems is discussed, explaining how incorporating intelligent capabilities within playful environments could allow learning from the animals’ behavior and automatically adapt the game to the animals’ needs and preferences. The engaging playful activities created with these systems could serve different purposes and eventually improve animals’ quality of life.This work was partially funded by the Spanish Ministry of Science andInnovation under the National R&D&I Program within the projects Create Worlds (TIN2010-20488) and SUPEREMOS (TIN2014-60077-R), and from Universitat PolitĂšcnica de ValĂšncia under Project UPV-FE-2014-24. It also received support from a postdoctoral fellowship within theVALi+d Program of the Conselleria d’EducaciĂł, Cultura I Esport (Generalitat Valenciana) awarded to Alejandro CatalĂĄ (APOSTD/2013/013). The work of Patricia Pons has been supported by the Universitat PolitĂšcnica de ValĂšncia under the “Beca de Excelencia” program and currently by an FPU fellowship from the Spanish Ministry of Education, Culture, and Sports (FPU13/03831).Pons TomĂĄs, P.; JaĂ©n MartĂ­nez, FJ.; CatalĂĄ BolĂłs, A. (2015). Envisioning Future Playful Interactive Environments for Animals. En More Playful User Interfaces: Interfaces that Invite Social and Physical Interaction. Springer. 121-150. https://doi.org/10.1007/978-981-287-546-4_6S121150Alfrink, K., van Peer, I., Lagerweij H, et al.: Pig Chase. Playing with Pigs project. (2012) www.playingwithpigs.nlAmat, M., Camps, T., Le, Brech S., Manteca, X.: Separation anxiety in dogs: the implications of predictability and contextual fear for behavioural treatment. Anim. Welf. 23(3), 263–266 (2014). doi: 10.7120/09627286.23.3.263Barker, S.B., Dawson, K.S.: The effects of animal-assisted therapy on anxiety ratings of hospitalized psychiatric patients. Psychiatr. Serv. 49(6), 797–801 (1998)Bateson, P., Martin, P.: Play, Playfulness, Creativity and Innovation. Cambridge University Press, New York (2013)Bekoff, M., Allen, C.: Intentional communication and social play: how and why animals negotiate and agree to play. In: Bekoff, M., Byers, J.A. (eds.) Animal Play Evolutionary. Comparative and Ecological Perspectives, pp. 97–114. Cambridge University Press, New York (1997)Burghardt, G.M.: The Genesis of Animal Play. Testing the Limits. MIT Press, Cambridge (2006)CatalĂĄ, A., Pons, P., JaĂ©n, J., et al.: A meta-model for dataflow-based rules in smart environments: evaluating user comprehension and performance. Sci. Comput. Prog. 78(10), 1930–1950 (2013). doi: 10.1016/j.scico.2012.06.010Cheok, A.D., Tan, R.T.K.C., Peiris, R.L., et al.: Metazoa ludens: mixed-reality interaction and play for small pets and humans. IEEE Trans. Syst. Man. Cybern.—Part A Syst. Hum. 41(5), 876–891 (2011). doi: 10.1109/TSMCA.2011.2108998Costello, B., Edmonds, E.: A study in play, pleasure and interaction design. In: Proceedings of the 2007 Conference on Designing Pleasurable Products and Interfaces, pp. 76–91 (2007)Csikszentmihalyi, M.: Beyond Boredom and Anxiety. The Experience of Play in Work and Games. Jossey-Bass Publishers, Hoboken (1975)Filan, S.L., Llewellyn-Jones, R.H.: Animal-assisted therapy for dementia: a review of the literature. Int. Psychogeriatr. 18(4), 597–611 (2006). doi: 10.1017/S1041610206003322GarcĂ­a-Herranz, M., Haya, P.A., AlamĂĄn, X.: Towards a ubiquitous end-user programming system for smart spaces. J. Univ. Comput. Sci. 16(12), 1633–1649 (2010). doi: 10.3217/jucs-016-12-1633Hirskyj-Douglas, I., Read, J.C.: Who is really in the centre of dog computer interaction? In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Hu, F., Silver, D., Trude, A.: LonelyDog@Home. In: International Conference Web Intelligence Intelligent Agent Technology—Workshops, 2007 IEEE/WIC/ACM IEEE, pp. 333–337, (2007)Huizinga, J.: Homo Ludens. Wolters-Noordhoff, Groningen (1985)Kamioka, H., Okada, S., Tsutani, K., et al.: Effectiveness of animal-assisted therapy: a systematic review of randomized controlled trials. Complement. Ther. Med. 22(2), 371–390 (2014). doi: 10.1016/j.ctim.2013.12.016Lee, S.P., Cheok, A.D., James, T.K.S., et al.: A mobile pet wearable computer and mixed reality system for human–poultry interaction through the internet. Pers. Ubiquit. Comput. 10(5), 301–317 (2006). doi: 10.1007/s00779-005-0051-6Leo, K., Tan, B.: User-tracking mobile floor projection virtual reality game system for paediatric gait and dynamic balance training. In: Proceedings of the 4th International Convention on Rehabilitation Engineering and Assistive Technology pp. 25:1–25:4 (2010)Mancini, C.: Animal-computer interaction: a manifesto. Mag. Interact. 18(4), 69–73 (2011). doi: 10.1145/1978822.1978836Mancini, C.: Animal-computer interaction (ACI): changing perspective on HCI, participation and sustainability. CHI ’13 Extended Abstracts on Human Factors in Computing Systems. ACM Press, New York, pp. 2227–2236 (2013)Mancini, C., van der Linden, J.: UbiComp for animal welfare: envisioning smart environments for kenneled dogs. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 117–128 (2014)Mancini, C., Harris, R., Aengenheister, B., Guest, C.: Re-centering multispecies practices: a canine interface for cancer detection dogs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing System, pp. 2673–2682 (2015)Mancini, C., van der Linden, J., Bryan, J., Stuart, A.: Exploring interspecies sensemaking: dog tracking semiotics and multispecies ethnography. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing—UbiComp ’12. ACM Press, New York, pp. 143–152 (2012)Mankoff, D., Dey, A.K., Mankoff, J., Mankoff, K.: Supporting interspecies social awareness: using peripheral displays for distributed pack awareness. In: Proceedings of the 18th Annual ACM Symposium on User interface Software and Technology, pp. 253–258 (2005)Maternaghan, C., Turner, K.J.: A configurable telecare system. In: Proceedings of the 4th International Conference on Pervasive Technologies Related to Assistive Environments—PETRA ’11. ACM Press, New York, pp. 14:1–14:8 (2011)Matsuzawa, T.: The Ai project: historical and ecological contexts. Anim. Cogn. 6(4), 199–211 (2003). doi: 10.1007/s10071-003-0199-2McGrath, R.E.: Species-appropriate computer mediated interaction. CHI ‘09 Extended Abstracts on Human Factors in Computing Systems. ACM Press, New York, pp. 2529–2534 (2009)MocholĂ­, J.A., JaĂ©n, J., CatalĂĄ, A.: A model of affective entities for effective learning environments. In: Innovations in Hybrid Intelligent Systems, pp. 337–344 (2007)Nijholt, A. (ed.): Playful User Interfaces. Springer, Singapore (2014)Norman, D.A.: The invisible computer. MIT Press, Cambridge (1998)Noz, F., An, J.: Cat cat revolution: an interspecies gaming experience. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2661–2664 (2011)Paldanius, M., KĂ€rkkĂ€inen, T., VÀÀnĂ€nen-Vainio-Mattila, K., et al.: Communication technology for human-dog interaction: exploration of dog owners’ experiences and expectations. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, New York, pp. 2641–2650 (2011)Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)Pons, P., JaĂ©n, J., CatalĂĄ, A.: Animal ludens: building intelligent playful environments for animals. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Resner, B.: Rover@Home: Computer Mediated Remote Interaction Between Humans and Dogs. M.Sc. thesis, Massachusetts Institute of Technology, Cambridge (2001)Ritvo, S.E., Allison, R.S.: Challenges related to nonhuman animal-computer interaction: usability and “liking”. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Robinson, C., Mncini, C., Van Der Linden, J., et al.: Canine-centered interface design: supporting the work of diabetes alert dogs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3757–3766 (2014)Rumbaugh, D.M.: Language Learning by a Chimpanzee: The LANA Project. Academic Press, New York (1977)Rumbaugh, D.M.: Apes and their future in comparative psychology. Eye Psi Chi 18(1), 16–19 (2013)Rumbaugh, D.M., Gill, T.V., Brown, J.V., et al.: A computer-controlled language training system for investigating the language skills of young apes. Behav. Res. Methods Instrum. 5(5), 385–392 (1973)Schwartz, S.: Separation anxiety syndrome in cats: 136 cases (1991–2000). J. Am. Vet. Med. Assoc. 220(7), 1028–1033 (2002). doi: 10.2460/javma.2002.220.1028Schwartz, S.: Separation anxiety syndrome in dogs and cats. J. Am. Vet. Med. Assoc. 222(11), 1526–1532 (2003)Solomon, O.: What a dog can do: children with autism and therapy dogs in social interaction. Ethos J. Soc. Psychol. Anthropol. 38(1), 143–166 (2010). doi: 10.1111/j.1548-1352.2010.01085.xTeh, K.S., Lee, S.P., Cheok, A.D.: Poultry. Internet: a remote human-pet interaction system. In: CHI ’06 Extended Abstracts on Human Factors in Computing Systems, pp. 251–254 (2006)VÀÀtĂ€jĂ€, H., Pesonen, E.: Ethical issues and guidelines when conducting HCI studies with animals. In: CHI ’13 Extended Abstracts on Human Factors in Computing Systems, pp. 2159–2168 (2013)VÀÀtĂ€jĂ€, H.: Animal welfare as a design goal in technology mediated human-animal interaction—opportunities with haptics. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Weilenmann, A., Juhlin, O.: Understanding people and animals. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems—CHI ’11. ACM Press, New York, pp. 2631–2640 (2011)Weiser, M.: The computer for the 21st century. Sci. Am. 265(3), 94–104 (1991)Westerlaken, M., Gualeni, S., Geurtsen, A.: Grounded zoomorphism: an evaluation methodology for ACI design. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Westerlaken, M., Gualeni, S.: Felino: the philosophical practice of making an interspecies videogame. Philosophy of Computer Games Conference, pp. 1–12 (2014)Wingrave, C.A., Rose, J., Langston, T., LaViola, J.J.J.: Early explorations of CAT: canine amusement and training. In: CHI ’10 Extended Abstracts on Human Factors in Computing Systems, pp. 2661–2669 (2010

    Pattern languages in HCI: A critical review

    Get PDF
    This article presents a critical review of patterns and pattern languages in human-computer interaction (HCI). In recent years, patterns and pattern languages have received considerable attention in HCI for their potential as a means for developing and communicating information and knowledge to support good design. This review examines the background to patterns and pattern languages in HCI, and seeks to locate pattern languages in relation to other approaches to interaction design. The review explores four key issues: What is a pattern? What is a pattern language? How are patterns and pattern languages used? and How are values reflected in the pattern-based approach to design? Following on from the review, a future research agenda is proposed for patterns and pattern languages in HCI

    Wearable Computing for Health and Fitness: Exploring the Relationship between Data and Human Behaviour

    Get PDF
    Health and fitness wearable technology has recently advanced, making it easier for an individual to monitor their behaviours. Previously self generated data interacts with the user to motivate positive behaviour change, but issues arise when relating this to long term mention of wearable devices. Previous studies within this area are discussed. We also consider a new approach where data is used to support instead of motivate, through monitoring and logging to encourage reflection. Based on issues highlighted, we then make recommendations on the direction in which future work could be most beneficial

    An Analysis of Publication Venues for Automatic Differentiation Research

    Get PDF
    We present the results of our analysis of publication venues for papers on automatic differentiation (AD), covering academic journals and conference proceedings. Our data are collected from the AD publications database maintained by the autodiff.org community website. The database is purpose-built for the AD field and is expanding via submissions by AD researchers. Therefore, it provides a relatively noise-free list of publications relating to the field. However, it does include noise in the form of variant spellings of journal and conference names. We handle this by manually correcting and merging these variants under the official names of corresponding venues. We also share the raw data we get after these corrections.Comment: 6 pages, 3 figure

    Predicate Abstraction with Indexed Predicates

    Full text link
    Predicate abstraction provides a powerful tool for verifying properties of infinite-state systems using a combination of a decision procedure for a subset of first-order logic and symbolic methods originally developed for finite-state model checking. We consider models containing first-order state variables, where the system state includes mutable functions and predicates. Such a model can describe systems containing arbitrarily large memories, buffers, and arrays of identical processes. We describe a form of predicate abstraction that constructs a formula over a set of universally quantified variables to describe invariant properties of the first-order state variables. We provide a formal justification of the soundness of our approach and describe how it has been used to verify several hardware and software designs, including a directory-based cache coherence protocol.Comment: 27 pages, 4 figures, 1 table, short version appeared in International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI'04), LNCS 2937, pages = 267--28

    A review of the empirical studies of computer supported human-to-human communication

    Get PDF
    This paper presents a review of the empirical studies of human-to-human communication which have been carried out over the last three decades. Although this review is primarily concerned with the empirical studies of computer supported human-to-human communication, a number of studies dealing with group work in non-computer-based collaborative environments, which form the basis of many of the empirical studies of the recent years in the area of CSCW, are also discussed. The concept of person and task spaces is introduced and then subsequently used to categorise the large volume of studies reported in this review. This paper also gives a comparative analysis of the findings of these studies, and draws a number of general conclusions to guide the design and evaluation of future CSCW systems
    • 

    corecore