11,467 research outputs found

    What does semantic tiling of the cortex tell us about semantics?

    Get PDF
    Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the cortex. Although this impressive research establishes distributed cortical areas active during the conceptual processing that underlies semantics, it tells us little about the nature of this processing. While mapping concepts between Marr's computational and implementation levels to support neural encoding and decoding, this approach ignores Marr's algorithmic level, central for understanding the mechanisms that implement cognition, in general, and conceptual processing, in particular. Following decades of research in cognitive science and neuroscience, what do we know so far about the representation and processing mechanisms that implement conceptual abilities? Most basically, much is known about the mechanisms associated with: (1) features and frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based inference, (4) concept composition, and (5) conceptual flexibility. Rather than explaining these fundamental representation and processing mechanisms, semantic tiles simply provide a trace of their activity over a relatively short time period within a specific learning context. Establishing the mechanisms that implement conceptual processing in the brain will require more than mapping it to cortical (and sub-cortical) activity, with process models from cognitive science likely to play central roles in specifying the intervening mechanisms. More generally, neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that contribute essential explanations to how the brain works, going beyond simply establishing the brain areas that respond to various task conditions

    Using film cutting in interface design

    Get PDF
    It has been suggested that computer interfaces could be made more usable if their designers utilized cinematography techniques, which have evolved to guide the viewer through a narrative despite frequent discontinuities in the presented scene (i.e., cuts between shots). Because of differences between the domains of film and interface design, it is not straightforward to understand how such techniques can be transferred. May and Barnard (1995) argued that a psychological model of watching film could support such a transference. This article presents an extended account of this model, which allows identification of the practice of collocation of objects of interest in the same screen position before and after a cut. To verify that filmmakers do, in fact, use such techniques successfully, eye movements were measured while participants watched the entirety of a commerciall

    Continuity in cognition

    Get PDF
    Designing for continuous interaction requires designers to consider the way in which human users can perceive and evaluate an artefact’s observable behaviour, in order to make inferences about its state and plan, and execute their own continuous behaviour. Understanding the human point of view in continuous interaction requires an understanding of human causal reasoning, of the way in which humans perceive and structure the world, and of human cognition. We present a framework for representing human cognition, and show briefly how it relates to the analysis of structure in continuous interaction, and the ways in which it may be applied in design

    Designing for mathematical abstraction

    Get PDF
    Our focus is on the design of systems (pedagogical, technical, social) that encourage mathematical abstraction, a process we refer to as designing for abstraction. In this paper, we draw on detailed design experiments from our research on children's understanding about chance and distribution to re-present this work as a case study in designing for abstraction. Through the case study, we elaborate a number of design heuristics that we claim are also identifiable in the broader literature on designing for mathematical abstraction. Our previous work on the micro-evolution of mathematical knowledge indicated that new mathematical abstractions are routinely forged in activity with available tools and representations, coordinated with relatively naïve unstructured knowledge. In this paper, we identify the role of design in steering the micro-evolution of knowledge towards the focus of the designer's aspirations. A significant finding from the current analysis is the identification of a heuristic in designing for abstraction that requires the intentional blurring of the key mathematical concepts with the tools whose use might foster the construction of that abstraction. It is commonly recognized that meaningful design constructs emerge from careful analysis of children's activity in relation to the designer's own framework for mathematical abstraction. The case study in this paper emphasizes the insufficiency of such a model for the relationship between epistemology and design. In fact, the case study characterises the dialectic relationship between epistemological analysis and design, in which the theoretical foundations of designing for abstraction and for the micro-evolution of mathematical knowledge can co-emerge. © 2010 Springer Science+Business Media B.V
    • …
    corecore