10,016 research outputs found

    Statistical Model Checking : An Overview

    Full text link
    Quantitative properties of stochastic systems are usually specified in logics that allow one to compare the measure of executions satisfying certain temporal properties with thresholds. The model checking problem for stochastic systems with respect to such logics is typically solved by a numerical approach that iteratively computes (or approximates) the exact measure of paths satisfying relevant subformulas; the algorithms themselves depend on the class of systems being analyzed as well as the logic used for specifying the properties. Another approach to solve the model checking problem is to \emph{simulate} the system for finitely many runs, and use \emph{hypothesis testing} to infer whether the samples provide a \emph{statistical} evidence for the satisfaction or violation of the specification. In this short paper, we survey the statistical approach, and outline its main advantages in terms of efficiency, uniformity, and simplicity.Comment: non

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    Probabilistic Plan Synthesis for Coupled Multi-Agent Systems

    Full text link
    This paper presents a fully automated procedure for controller synthesis for multi-agent systems under the presence of uncertainties. We model the motion of each of the NN agents in the environment as a Markov Decision Process (MDP) and we assign to each agent one individual high-level formula given in Probabilistic Computational Tree Logic (PCTL). Each agent may need to collaborate with other agents in order to achieve a task. The collaboration is imposed by sharing actions between the agents. We aim to design local control policies such that each agent satisfies its individual PCTL formula. The proposed algorithm builds on clustering the agents, MDP products construction and controller policies design. We show that our approach has better computational complexity than the centralized case, which traditionally suffers from very high computational demands.Comment: IFAC WC 2017, Toulouse, Franc

    Strategy Synthesis for Autonomous Agents Using PRISM

    Get PDF
    We present probabilistic models for autonomous agent search and retrieve missions derived from Simulink models for an Unmanned Aerial Vehicle (UAV) and show how probabilistic model checking and the probabilistic model checker PRISM can be used for optimal controller generation. We introduce a sequence of scenarios relevant to UAVs and other autonomous agents such as underwater and ground vehicles. For each scenario we demonstrate how it can be modelled using the PRISM language, give model checking statistics and present the synthesised optimal controllers. We conclude with a discussion of the limitations when using probabilistic model checking and PRISM in this context and what steps can be taken to overcome them. In addition, we consider how the controllers can be returned to the UAV and adapted for use on larger search areas

    Verifiably-safe software-defined networks for CPS

    Full text link
    Next generation cyber-physical systems (CPS) are expected to be deployed in domains which require scalability as well as performance under dynamic conditions. This scale and dynamicity will require that CPS communication networks be programmatic (i.e., not requiring manual intervention at any stage), but still maintain iron-clad safety guarantees. Software-defined networking standards like OpenFlow provide a means for scalably building tailor-made network architectures, but there is no guarantee that these systems are safe, correct, or secure. In this work we propose a methodology and accompanying tools for specifying and modeling distributed systems such that existing formal verification techniques can be transparently used to analyze critical requirements and properties prior to system implementation. We demonstrate this methodology by iteratively modeling and verifying an OpenFlow learning switch network with respect to network correctness, network convergence, and mobility-related properties. We posit that a design strategy based on the complementary pairing of software-defined networking and formal verification would enable the CPS community to build next-generation systems without sacrificing the safety and reliability that these systems must deliver
    • …
    corecore