21,187 research outputs found

    A Coalgebraic Approach to Reducing Finitary Automata

    Full text link
    Compact representations of automata are important for efficiency. In this paper, we study methods to compute reduced automata, in which no two states accept the same language. We do this for finitary automata (FA), an abstract definition that encompasses probabilistic and weighted automata. Our procedure makes use of Milius' locally finite fixpoint. We present a reduction algorithm that instantiates to probabilistic and S-linear weighted automata (WA) for a large class of semirings. Moreover, we propose a potential connection between properness of a semiring and our provided reduction algorithm for WAs, paving the way for future work in connecting the reduction of automata to the properness of their associated coalgebras

    A Few Considerations on Structural and Logical Composition in Specification Theories

    Full text link
    Over the last 20 years a large number of automata-based specification theories have been proposed for modeling of discrete,real-time and probabilistic systems. We have observed a lot of shared algebraic structure between these formalisms. In this short abstract, we collect results of our work in progress on describing and systematizing the algebraic assumptions in specification theories.Comment: In Proceedings FIT 2010, arXiv:1101.426

    Finite-State Abstractions for Probabilistic Computation Tree Logic

    No full text
    Probabilistic Computation Tree Logic (PCTL) is the established temporal logic for probabilistic verification of discrete-time Markov chains. Probabilistic model checking is a technique that verifies or refutes whether a property specified in this logic holds in a Markov chain. But Markov chains are often infinite or too large for this technique to apply. A standard solution to this problem is to convert the Markov chain to an abstract model and to model check that abstract model. The problem this thesis therefore studies is whether or when such finite abstractions of Markov chains for model checking PCTL exist. This thesis makes the following contributions. We identify a sizeable fragment of PCTL for which 3-valued Markov chains can serve as finite abstractions; this fragment is maximal for those abstractions and subsumes many practically relevant specifications including, e.g., reachability. We also develop game-theoretic foundations for the semantics of PCTL over Markov chains by capturing the standard PCTL semantics via a two-player games. These games, finally, inspire a notion of p-automata, which accept entire Markov chains. We show that p-automata subsume PCTL and Markov chains; that their languages of Markov chains have pleasant closure properties; and that the complexity of deciding acceptance matches that of probabilistic model checking for p-automata representing PCTL formulae. In addition, we offer a simulation between p-automata that under-approximates language containment. These results then allow us to show that p-automata comprise a solution to the problem studied in this thesis

    Towards Trace Metrics via Functor Lifting

    Get PDF
    We investigate the possibility of deriving metric trace semantics in a coalgebraic framework. First, we generalize a technique for systematically lifting functors from the category Set of sets to the category PMet of pseudometric spaces, showing under which conditions also natural transformations, monads and distributive laws can be lifted. By exploiting some recent work on an abstract determinization, these results enable the derivation of trace metrics starting from coalgebras in Set. More precisely, for a coalgebra on Set we determinize it, thus obtaining a coalgebra in the Eilenberg-Moore category of a monad. When the monad can be lifted to PMet, we can equip the final coalgebra with a behavioral distance. The trace distance between two states of the original coalgebra is the distance between their images in the determinized coalgebra through the unit of the monad. We show how our framework applies to nondeterministic automata and probabilistic automata

    On the Complexity of the Equivalence Problem for Probabilistic Automata

    Full text link
    Checking two probabilistic automata for equivalence has been shown to be a key problem for efficiently establishing various behavioural and anonymity properties of probabilistic systems. In recent experiments a randomised equivalence test based on polynomial identity testing outperformed deterministic algorithms. In this paper we show that polynomial identity testing yields efficient algorithms for various generalisations of the equivalence problem. First, we provide a randomized NC procedure that also outputs a counterexample trace in case of inequivalence. Second, we show how to check for equivalence two probabilistic automata with (cumulative) rewards. Our algorithm runs in deterministic polynomial time, if the number of reward counters is fixed. Finally we show that the equivalence problem for probabilistic visibly pushdown automata is logspace equivalent to the Arithmetic Circuit Identity Testing problem, which is to decide whether a polynomial represented by an arithmetic circuit is identically zero.Comment: technical report for a FoSSaCS'12 pape
    corecore