18,365 research outputs found

    An Algebra of Hierarchical Graphs and its Application to Structural Encoding

    Get PDF
    We define an algebraic theory of hierarchical graphs, whose axioms characterise graph isomorphism: two terms are equated exactly when they represent the same graph. Our algebra can be understood as a high-level language for describing graphs with a node-sharing, embedding structure, and it is then well suited for defining graphical representations of software models where nesting and linking are key aspects. In particular, we propose the use of our graph formalism as a convenient way to describe configurations in process calculi equipped with inherently hierarchical features such as sessions, locations, transactions, membranes or ambients. The graph syntax can be seen as an intermediate representation language, that facilitates the encodings of algebraic specifications, since it provides primitives for nesting, name restriction and parallel composition. In addition, proving soundness and correctness of an encoding (i.e. proving that structurally equivalent processes are mapped to isomorphic graphs) becomes easier as it can be done by induction over the graph syntax

    On Role Logic

    Full text link
    We present role logic, a notation for describing properties of relational structures in shape analysis, databases, and knowledge bases. We construct role logic using the ideas of de Bruijn's notation for lambda calculus, an encoding of first-order logic in lambda calculus, and a simple rule for implicit arguments of unary and binary predicates. The unrestricted version of role logic has the expressive power of first-order logic with transitive closure. Using a syntactic restriction on role logic formulas, we identify a natural fragment RL^2 of role logic. We show that the RL^2 fragment has the same expressive power as two-variable logic with counting C^2 and is therefore decidable. We present a translation of an imperative language into the decidable fragment RL^2, which allows compositional verification of programs that manipulate relational structures. In addition, we show how RL^2 encodes boolean shape analysis constraints and an expressive description logic.Comment: 20 pages. Our later SAS 2004 result builds on this wor

    Relational type-checking for MELL proof-structures. Part 1: Multiplicatives

    Get PDF
    Relational semantics for linear logic is a form of non-idempotent intersection type system, from which several informations on the execution of a proof-structure can be recovered. An element of the relational interpretation of a proof-structure R with conclusion Γ\Gamma acts thus as a type (refining Γ\Gamma) having R as an inhabitant. We are interested in the following type-checking question: given a proof-structure R, a list of formulae Γ\Gamma, and a point x in the relational interpretation of Γ\Gamma, is x in the interpretation of R? This question is decidable. We present here an algorithm that decides it in time linear in the size of R, if R is a proof-structure in the multiplicative fragment of linear logic. This algorithm can be extended to larger fragments of multiplicative-exponential linear logic containing λ\lambda-calculus

    On Unification Modulo One-Sided Distributivity: Algorithms, Variants and Asymmetry

    Full text link
    An algorithm for unification modulo one-sided distributivity is an early result by Tid\'en and Arnborg. More recently this theory has been of interest in cryptographic protocol analysis due to the fact that many cryptographic operators satisfy this property. Unfortunately the algorithm presented in the paper, although correct, has recently been shown not to be polynomial time bounded as claimed. In addition, for some instances, there exist most general unifiers that are exponentially large with respect to the input size. In this paper we first present a new polynomial time algorithm that solves the decision problem for a non-trivial subcase, based on a typed theory, of unification modulo one-sided distributivity. Next we present a new polynomial algorithm that solves the decision problem for unification modulo one-sided distributivity. A construction, employing string compression, is used to achieve the polynomial bound. Lastly, we examine the one-sided distributivity problem in the new asymmetric unification paradigm. We give the first asymmetric unification algorithm for one-sided distributivity

    A Typed Model for Linked Data

    No full text
    The term Linked Data is used to describe ubiquitous and emerging semi-structured data formats on the Web. URIs in Linked Data allow diverse data sources to link to each other, forming a Web of Data. A calculus which models concurrent queries and updates over Linked Data is presented. The calculus exhibits operations essential for declaring rich atomic actions. The operations recover emergent structure in the loosely structured Web of Data. The calculus is executable due to its operational semantics. A light type system ensures that URIs with a distinguished role are used consistently. The main theorem verifies that the light type system and operational semantics work at the same level of granularity, so are compatible. Examples show that a range of existing and emerging standards are captured. Data formats include RDF, named graphs and feeds. The primitives of the calculus model SPARQL Query and the Atom Publishing Protocol. The subtype system is based on RDFS, which improves interoperability. Examples focuss on the SPARQL Update proposal for which a fine grained operational semantics is developed. Further potential high level languages are outlined for exploiting Linked Data

    Transforming specifications of observable behaviour into programs

    Get PDF
    A methodology for deriving programs from specifications of observable behaviour is described. The class of processes to which this methodology is applicable includes those whose state changes are fully definable by labelled transition systems, for example communicating processes without internal state changes. A logic program representation of such labelled transition systems is proposed, interpreters based on path searching techniques are defined, and the use of partial evaluation techniques to derive the executable programs is described
    corecore