787,776 research outputs found

    Abstracting object interactions using composition filters

    Get PDF
    It is generally claimed that object-based models are very suitable for building distributed system architectures since object interactions follow the client-server model. To cope with the complexity of today's distributed systems, however, we think that high-level linguistic mechanisms are needed to effectively structure, abstract and reuse object interactions. For example, the conventional object-oriented model does not provide high-level language mechanisms to model layered system architectures. Moreover, we consider the message passing model of the conventional object-oriented model as being too low-level because it can only specify object interactions that involve two partner objects at a time and its semantics cannot be extended easily. This paper introduces Abstract Communication Types (ACTs), which are objects that abstract interactions among objects. ACTs make it easier to model layered communication architectures, to enforce the invariant behavior among objects, to reduce the complexity of programs by hiding the interaction details in separate modules and to improve reusability through the application of object-oriented principles to ACT classes. We illustrate the concept of ACTs using the composition filters model

    Distributed and Centralized Task Allocation: When and Where to Use Them

    No full text
    Self-organisation is frequently advocated as the solution for managing large, dynamic systems. Distributed algorithms are implicitly designed for infinitely large problems, while small systems are regarded as being controllable using traditional, centralised approaches. Many real-world systems, however, do not fit conveniently into these "small" or "large" categories, resulting in a range of cases where the optimal solution is ambiguous. This difficulty is exacerbated by enthusiasts of either approach constructing problems that suit their preferred control architecture. We address this ambiguity by building an abstract model of task allocation in a community of specialised agents. We are inspired by the problem of work distribution in distributed satellite systems, but the model is also relevant to the resource allocation problems in distributed robotics, autonomic computing and wireless sensor networks. We compare the behaviour of a self-organising, market-based task allocation strategy to a classical approach that uses a central controller with global knowledge. The objective is not to prove one mechanism inherently superior to the other; instead we are interested in the regions of problem space where each of them dominates. Simulation is used to explore the trade-off between energy consumption and robustness in a system of intermediate size, with fixed communication costs and varying rates of component failure. We identify boundaries between regions in the parameter space where one or the other architecture will be favoured. This allows us to derive guidelines for system designers, thus contributing to the development of a disciplined approach to controlling distributed systems using self-organising mechanisms

    Justness: A Completeness Criterion for Capturing Liveness Properties (Extended Abstract)

    Get PDF
    This paper poses that transition systems constitute a good model of distributed systems only in combination with a criterion telling which paths model complete runs of the represented systems. Among such criteria, progress is too weak to capture relevant liveness properties, and fairness is often too strong; for typical applications we advocate the intermediate criterion of justness. Previously, we proposed a definition of justness in terms of an asymmetric concurrency relation between transitions. Here we define such a concurrency relation for the transition systems associated to the process algebra CCS as well as its extensions with broadcast communication and signals, thereby making these process algebras suitable for capturing liveness properties requiring justness.Comment: An extended abstract of this paper appears in Proc. FoSSaCS'1

    Telecommunications for a deregulated power industry

    Get PDF
    Telecommunication plays a very important role in the effective monitoring and control of the power grid. Deregulation of the US power industry has enabled utilities to explore various communication options and advanced technologies. Utilities are increasingly investing in distributed resources, dynamic real-time monitoring, automated meter reading, and value added services like home energy management systems and broadband access for its customers. Telecommunication options like power line communications (PLC) and satellites are fast replacing legacy telephone and microwave systems in the US.;The objective of this thesis is to study the communication options that are available for utilities today. Phasor measurement units (PMUs) are analyzed in detail and communication delays due to the use of PMUs in wide area measurement systems (WAMS) are also studied. The highlight of this thesis is a close look at the characteristics of the power line channel by presenting a power line channel model and the use of digital modulation techniques like SS and OFDM, which help overcome the effects of such a hostile medium of communication. (Abstract shortened by UMI.)

    Gossip in a Smartphone Peer-to-Peer Network

    Full text link
    In this paper, we study the fundamental problem of gossip in the mobile telephone model: a recently introduced variation of the classical telephone model modified to better describe the local peer-to-peer communication services implemented in many popular smartphone operating systems. In more detail, the mobile telephone model differs from the classical telephone model in three ways: (1) each device can participate in at most one connection per round; (2) the network topology can undergo a parameterized rate of change; and (3) devices can advertise a parameterized number of bits about their state to their neighbors in each round before connection attempts are initiated. We begin by describing and analyzing new randomized gossip algorithms in this model under the harsh assumption of a network topology that can change completely in every round. We prove a significant time complexity gap between the case where nodes can advertise 00 bits to their neighbors in each round, and the case where nodes can advertise 11 bit. For the latter assumption, we present two solutions: the first depends on a shared randomness source, while the second eliminates this assumption using a pseudorandomness generator we prove to exist with a novel generalization of a classical result from the study of two-party communication complexity. We then turn our attention to the easier case where the topology graph is stable, and describe and analyze a new gossip algorithm that provides a substantial performance improvement for many parameters. We conclude by studying a relaxed version of gossip in which it is only necessary for nodes to each learn a specified fraction of the messages in the system.Comment: Extended Abstract to Appear in the Proceedings of the ACM Conference on the Principles of Distributed Computing (PODC 2017

    Distributed real-time operating system (DRTOS) modeling in SpecC

    Get PDF
    System level design of an embedded computing system involves a multi-step process to refine the system from an abstract specification to an actual implementation by defining and modeling the system at various levels of abstraction. System level design supports evaluating and optimizing the system early in design exploration.;Embedded computing systems may consist of multiple processing elements, memories, I/O devices, sensors, and actors. The selection of processing elements includes instruction-set processors and custom hardware units, such as application specific integrated circuit (ASIC) and field programmable gate array (FPGA). Real-time operating systems (RTOS) have been used in embedded systems as an industry standard for years and can offer embedded systems the characteristics such as concurrency and time constraints. Some of the existing system level design languages, such as SpecC, provide the capability to model an embedded system including an RTOS for a single processor. However, there is a need to develop a distributed RTOS modeling mechanism as part of the system level design methodology due to the increasing number of processing elements in systems and to embedded platforms having multiple processors. A distributed RTOS (DRTOS) provides services such as multiprocessor tasks scheduling, interprocess communication, synchronization, and distributed mutual exclusion, etc.;In this thesis, we develop a DRTOS model as the extension of the existing SpecC single RTOS model to provide basic functionalities of a DRTOS implementation, and present the refinement methodology for using our DRTOS model during system level synthesis. The DRTOS model and refinement process are demonstrated in the SpecC SCE environment. The capabilities and limitations of the DRTOS modeling approach are presented

    A comparative study of structured and un-structured remote data access in distributed computing systems

    Get PDF
    Recently, the use of distributed computing systems has been growing rapidly due to the result of cheap and advanced microelectronic technology. In addition to the decrease in hardware costs, the tremendous development in machine to machine communication interfaces, especially in local area networking, also favours the use of distributed systems. Distributed systems often require remote access to data stored at different sites. Generally, two models of access to remote data storage exist: the un structured and structured models. In the former, data is simply stored as row of bytes, whereas in the latter, data is stored along with the associated access codes. The objective of this thesis is to compare these two models and hence determines the tradeoffs of each model. First of all, an extended review of the field of distributed data access is provided which addressing key issues such as the basic design principles of distributed computing systems, the notions of abstract data types, data inheritance, data type system and data persistence. Secondly, a distributed system is implemented using the persistent programming language PS-algol and the high level language C in conjunction with the remote procedure call facilities available in Unix(^1) 4.2 BSD operating system. This distributed system makes extensive use of Unix's software tools and hence it is called DCSUNIX for Distributed Computing System on UNIX. Thirdly, two specific applications which employ the implemented system will be given so that a comparison can be made between the two remote data access models mentioned above. Finally, the implemented system is compared with the criteria established earlier in the thesis. keywords: abstract data types, class, database management, data persistence, information hiding, inheritance, object oriented programming, programming languages, remote procedure calls, transparency, and type checking
    corecore