2 research outputs found

    Absolute Quantum Efficiency Measurements by Means of Conditioned Polarization Rotation

    Full text link
    We propose a new scheme for measuring the quantum efficiency of photon counting detectors by using correlated pho-tons. The measurement technique is based on a 90 rotation of the polarization of one photon member of a correlated pair produced by parametric down-conversion, conditioned on the detection of the other correlated photon after polarization selection. We present experimental results obtained with this scheme

    Analysis of the possibility of analog detectors calibration by exploiting Stimulated Parametric Down Conversion

    Full text link
    Spontaneous parametric down conversion (SPDC) has been largely exploited as a tool for absolute calibration of photon-counting detectors, i.e detectors registering very small photon fluxes. In [J. Opt. Soc. Am. B 23, 2185 (2006)] we derived a method for absolute calibration of analog detectors using SPDC emission at higher photon fluxes, where the beam is seen as a continuum by the detector. Nevertheless intrinsic limitations appear when high-gain regime of SPDC is required to reach even larger photon fluxes. Here we show that stimulated parametric down conversion allow one to avoid this limitation, since stimulated photon fluxes are increased by the presence of the seed beam.Comment: 9 pages, 1 figur
    corecore