18,416 research outputs found

    A composition theorem for parity kill number

    Full text link
    In this work, we study the parity complexity measures Cmin[f]{\mathsf{C}^{\oplus}_{\min}}[f] and DT[f]{\mathsf{DT^{\oplus}}}[f]. Cmin[f]{\mathsf{C}^{\oplus}_{\min}}[f] is the \emph{parity kill number} of ff, the fewest number of parities on the input variables one has to fix in order to "kill" ff, i.e. to make it constant. DT[f]{\mathsf{DT^{\oplus}}}[f] is the depth of the shortest \emph{parity decision tree} which computes ff. These complexity measures have in recent years become increasingly important in the fields of communication complexity \cite{ZS09, MO09, ZS10, TWXZ13} and pseudorandomness \cite{BK12, Sha11, CT13}. Our main result is a composition theorem for Cmin{\mathsf{C}^{\oplus}_{\min}}. The kk-th power of ff, denoted fkf^{\circ k}, is the function which results from composing ff with itself kk times. We prove that if ff is not a parity function, then Cmin[fk]Ω(Cmin[f]k).{\mathsf{C}^{\oplus}_{\min}}[f^{\circ k}] \geq \Omega({\mathsf{C}_{\min}}[f]^{k}). In other words, the parity kill number of ff is essentially supermultiplicative in the \emph{normal} kill number of ff (also known as the minimum certificate complexity). As an application of our composition theorem, we show lower bounds on the parity complexity measures of Sortk\mathsf{Sort}^{\circ k} and HIk\mathsf{HI}^{\circ k}. Here Sort\mathsf{Sort} is the sort function due to Ambainis \cite{Amb06}, and HI\mathsf{HI} is Kushilevitz's hemi-icosahedron function \cite{NW95}. In doing so, we disprove a conjecture of Montanaro and Osborne \cite{MO09} which had applications to communication complexity and computational learning theory. In addition, we give new lower bounds for conjectures of \cite{MO09,ZS10} and \cite{TWXZ13}

    Top-Down Induction of Decision Trees: Rigorous Guarantees and Inherent Limitations

    Get PDF
    Consider the following heuristic for building a decision tree for a function f:{0,1}n{±1}f : \{0,1\}^n \to \{\pm 1\}. Place the most influential variable xix_i of ff at the root, and recurse on the subfunctions fxi=0f_{x_i=0} and fxi=1f_{x_i=1} on the left and right subtrees respectively; terminate once the tree is an ε\varepsilon-approximation of ff. We analyze the quality of this heuristic, obtaining near-matching upper and lower bounds: \circ Upper bound: For every ff with decision tree size ss and every ε(0,12)\varepsilon \in (0,\frac1{2}), this heuristic builds a decision tree of size at most sO(log(s/ε)log(1/ε))s^{O(\log(s/\varepsilon)\log(1/\varepsilon))}. \circ Lower bound: For every ε(0,12)\varepsilon \in (0,\frac1{2}) and s2O~(n)s \le 2^{\tilde{O}(\sqrt{n})}, there is an ff with decision tree size ss such that this heuristic builds a decision tree of size sΩ~(logs)s^{\tilde{\Omega}(\log s)}. We also obtain upper and lower bounds for monotone functions: sO(logs/ε)s^{O(\sqrt{\log s}/\varepsilon)} and sΩ~(logs4)s^{\tilde{\Omega}(\sqrt[4]{\log s } )} respectively. The lower bound disproves conjectures of Fiat and Pechyony (2004) and Lee (2009). Our upper bounds yield new algorithms for properly learning decision trees under the uniform distribution. We show that these algorithms---which are motivated by widely employed and empirically successful top-down decision tree learning heuristics such as ID3, C4.5, and CART---achieve provable guarantees that compare favorably with those of the current fastest algorithm (Ehrenfeucht and Haussler, 1989). Our lower bounds shed new light on the limitations of these heuristics. Finally, we revisit the classic work of Ehrenfeucht and Haussler. We extend it to give the first uniform-distribution proper learning algorithm that achieves polynomial sample and memory complexity, while matching its state-of-the-art quasipolynomial runtime

    On the parity complexity measures of Boolean functions

    Get PDF
    The parity decision tree model extends the decision tree model by allowing the computation of a parity function in one step. We prove that the deterministic parity decision tree complexity of any Boolean function is polynomially related to the non-deterministic complexity of the function or its complement. We also show that they are polynomially related to an analogue of the block sensitivity. We further study parity decision trees in their relations with an intermediate variant of the decision trees, as well as with communication complexity.Comment: submitted to TCS on 16-MAR-200

    Optimal Direct Sum Results for Deterministic and Randomized Decision Tree Complexity

    Full text link
    A Direct Sum Theorem holds in a model of computation, when solving some k input instances together is k times as expensive as solving one. We show that Direct Sum Theorems hold in the models of deterministic and randomized decision trees for all relations. We also note that a near optimal Direct Sum Theorem holds for quantum decision trees for boolean functions.Comment: 7 page
    corecore