14,690 research outputs found

    Non-integrability of measure preserving maps via Lie symmetries

    Get PDF
    We consider the problem of characterizing, for certain natural number mm, the local Cm\mathcal{C}^m-non-integrability near elliptic fixed points of smooth planar measure preserving maps. Our criterion relates this non-integrability with the existence of some Lie Symmetries associated to the maps, together with the study of the finiteness of its periodic points. One of the steps in the proof uses the regularity of the period function on the whole period annulus for non-degenerate centers, question that we believe that is interesting by itself. The obtained criterion can be applied to prove the local non-integrability of the Cohen map and of several rational maps coming from second order difference equations.Comment: 25 page

    Signatures of integrability in charge and thermal transport in 1D quantum systems

    Get PDF
    Integrable and non-integrable systems have very different transport properties. In this work, we highlight these differences for specific one dimensional models of interacting lattice fermions using numerical exact diagonalization. We calculate the finite temperature adiabatic stiffness (or Drude weight) and isothermal stiffness (or ``Meissner'' stiffness) in electrical and thermal transport and also compute the complete momentum and frequency dependent dynamical conductivities σ(q,ω)\sigma(q,\omega) and κ(q,ω)\kappa(q,\omega). The Meissner stiffness goes to zero rapidly with system size for both integrable and non-integrable systems. The Drude weight shows signs of diffusion in the non-integrable system and ballistic behavior in the integrable system. The dynamical conductivities are also consistent with ballistic and diffusive behavior in the integrable and non-integrable systems respectively.Comment: 4 pages, 4 figure

    Integrability and level crossing manifolds in a quantum Hamiltonian system

    Get PDF
    We consider a two-spin model, represented classically by a nonlinear autonomous Hamiltonian system with two degrees of freedom and a nontrivial integrability condition, and quantum mechanically by a real symmetric Hamiltonian matrix with blocks of dimensionalities K=l(l+1)/2, l=1,2,... In the six-dimensional (6D) parameter space of this model, classical integrability is satisfied on a 5D hypersurface, and level crossings occur on 4D manifolds that are completely embedded in the integrability hypersurface except for some lower-D sub-manifolds. Under mild assumptions, the classical integrability condition can be reconstructed from a purely quantum mechanical study of level degeneracies in finite-dimensional invariant blocks of the Hamiltonian matrix. Our conclusions are based on rigorous results for K=3 and on numerical results for K=6,10.Comment: 8 pages, 3 figure

    Open problems, questions, and challenges in finite-dimensional integrable systems

    Get PDF
    The paper surveys open problems and questions related to different aspects of integrable systems with finitely many degrees of freedom. Many of the open problems were suggested by the participants of the conference “Finite-dimensional Integrable Systems, FDIS 2017” held at CRM, Barcelona in July 2017.Postprint (updated version
    corecore