33,824 research outputs found

    Counting Carambolas

    Full text link
    We give upper and lower bounds on the maximum and minimum number of geometric configurations of various kinds present (as subgraphs) in a triangulation of nn points in the plane. Configurations of interest include \emph{convex polygons}, \emph{star-shaped polygons} and \emph{monotone paths}. We also consider related problems for \emph{directed} planar straight-line graphs.Comment: update reflects journal version, to appear in Graphs and Combinatorics; 18 pages, 13 figure

    Model selection and local geometry

    Full text link
    We consider problems in model selection caused by the geometry of models close to their points of intersection. In some cases---including common classes of causal or graphical models, as well as time series models---distinct models may nevertheless have identical tangent spaces. This has two immediate consequences: first, in order to obtain constant power to reject one model in favour of another we need local alternative hypotheses that decrease to the null at a slower rate than the usual parametric n−1/2n^{-1/2} (typically we will require n−1/4n^{-1/4} or slower); in other words, to distinguish between the models we need large effect sizes or very large sample sizes. Second, we show that under even weaker conditions on their tangent cones, models in these classes cannot be made simultaneously convex by a reparameterization. This shows that Bayesian network models, amongst others, cannot be learned directly with a convex method similar to the graphical lasso. However, we are able to use our results to suggest methods for model selection that learn the tangent space directly, rather than the model itself. In particular, we give a generic algorithm for learning Bayesian network models

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    1-Safe Petri nets and special cube complexes: equivalence and applications

    Full text link
    Nielsen, Plotkin, and Winskel (1981) proved that every 1-safe Petri net NN unfolds into an event structure EN\mathcal{E}_N. By a result of Thiagarajan (1996 and 2002), these unfoldings are exactly the trace regular event structures. Thiagarajan (1996 and 2002) conjectured that regular event structures correspond exactly to trace regular event structures. In a recent paper (Chalopin and Chepoi, 2017, 2018), we disproved this conjecture, based on the striking bijection between domains of event structures, median graphs, and CAT(0) cube complexes. On the other hand, in Chalopin and Chepoi (2018) we proved that Thiagarajan's conjecture is true for regular event structures whose domains are principal filters of universal covers of (virtually) finite special cube complexes. In the current paper, we prove the converse: to any finite 1-safe Petri net NN one can associate a finite special cube complex XN{X}_N such that the domain of the event structure EN\mathcal{E}_N (obtained as the unfolding of NN) is a principal filter of the universal cover X~N\widetilde{X}_N of XNX_N. This establishes a bijection between 1-safe Petri nets and finite special cube complexes and provides a combinatorial characterization of trace regular event structures. Using this bijection and techniques from graph theory and geometry (MSO theory of graphs, bounded treewidth, and bounded hyperbolicity) we disprove yet another conjecture by Thiagarajan (from the paper with S. Yang from 2014) that the monadic second order logic of a 1-safe Petri net is decidable if and only if its unfolding is grid-free. Our counterexample is the trace regular event structure E˙Z\mathcal{\dot E}_Z which arises from a virtually special square complex Z˙\dot Z. The domain of E˙Z\mathcal{\dot E}_Z is grid-free (because it is hyperbolic), but the MSO theory of the event structure E˙Z\mathcal{\dot E}_Z is undecidable
    • …
    corecore