3,832 research outputs found

    Abelian networks III. The critical group

    Full text link
    The critical group of an abelian network is a finite abelian group that governs the behavior of the network on large inputs. It generalizes the sandpile group of a graph. We show that the critical group of an irreducible abelian network acts freely and transitively on recurrent states of the network. We exhibit the critical group as a quotient of a free abelian group by a subgroup containing the image of the Laplacian, with equality in the case that the network is rectangular. We generalize Dhar's burning algorithm to abelian networks, and estimate the running time of an abelian network on an arbitrary input up to a constant additive error.Comment: supersedes sections 7 and 8 of arXiv:1309.3445v1. To appear in the Journal of Algebraic Combinatoric

    Abelian networks IV. Dynamics of nonhalting networks

    Full text link
    An abelian network is a collection of communicating automata whose state transitions and message passing each satisfy a local commutativity condition. This paper is a continuation of the abelian networks series of Bond and Levine (2016), for which we extend the theory of abelian networks that halt on all inputs to networks that can run forever. A nonhalting abelian network can be realized as a discrete dynamical system in many different ways, depending on the update order. We show that certain features of the dynamics, such as minimal period length, have intrinsic definitions that do not require specifying an update order. We give an intrinsic definition of the \emph{torsion group} of a finite irreducible (halting or nonhalting) abelian network, and show that it coincides with the critical group of Bond and Levine (2016) if the network is halting. We show that the torsion group acts freely on the set of invertible recurrent components of the trajectory digraph, and identify when this action is transitive. This perspective leads to new results even in the classical case of sinkless rotor networks (deterministic analogues of random walks). In Holroyd et. al (2008) it was shown that the recurrent configurations of a sinkless rotor network with just one chip are precisely the unicycles (spanning subgraphs with a unique oriented cycle, with the chip on the cycle). We generalize this result to abelian mobile agent networks with any number of chips. We give formulas for generating series such as n1rnzn=det(11zDA) \sum_{n \geq 1} r_n z^n = \det (\frac{1}{1-z}D - A ) where rnr_n is the number of recurrent chip-and-rotor configurations with nn chips; DD is the diagonal matrix of outdegrees, and AA is the adjacency matrix. A consequence is that the sequence (rn)n1(r_n)_{n \geq 1} completely determines the spectrum of the simple random walk on the network.Comment: 95 pages, 21 figure

    Abelian networks II. Halting on all inputs

    Full text link
    Abelian networks are systems of communicating automata satisfying a local commutativity condition. We show that a finite irreducible abelian network halts on all inputs if and only if all eigenvalues of its production matrix lie in the open unit disk.Comment: Supersedes sections 5 and 6 of arXiv:1309.3445v1. To appear in Selecta Mathematic

    The Tensor Networks Anthology: Simulation techniques for many-body quantum lattice systems

    Full text link
    We present a compendium of numerical simulation techniques, based on tensor network methods, aiming to address problems of many-body quantum mechanics on a classical computer. The core setting of this anthology are lattice problems in low spatial dimension at finite size, a physical scenario where tensor network methods, both Density Matrix Renormalization Group and beyond, have long proven to be winning strategies. Here we explore in detail the numerical frameworks and methods employed to deal with low-dimension physical setups, from a computational physics perspective. We focus on symmetries and closed-system simulations in arbitrary boundary conditions, while discussing the numerical data structures and linear algebra manipulation routines involved, which form the core libraries of any tensor network code. At a higher level, we put the spotlight on loop-free network geometries, discussing their advantages, and presenting in detail algorithms to simulate low-energy equilibrium states. Accompanied by discussions of data structures, numerical techniques and performance, this anthology serves as a programmer's companion, as well as a self-contained introduction and review of the basic and selected advanced concepts in tensor networks, including examples of their applications.Comment: 115 pages, 56 figure

    Dual Computations of Non-abelian Yang-Mills on the Lattice

    Full text link
    In the past several decades there have been a number of proposals for computing with dual forms of non-abelian Yang-Mills theories on the lattice. Motivated by the gauge-invariant, geometric picture offered by dual models and successful applications of duality in the U(1) case, we revisit the question of whether it is practical to perform numerical computation using non-abelian dual models. Specifically, we consider three-dimensional SU(2) pure Yang-Mills as an accessible yet non-trivial case in which the gauge group is non-abelian. Using methods developed recently in the context of spin foam quantum gravity, we derive an algorithm for efficiently computing the dual amplitude and describe Metropolis moves for sampling the dual ensemble. We relate our algorithms to prior work in non-abelian dual computations of Hari Dass and his collaborators, addressing several problems that have been left open. We report results of spin expectation value computations over a range of lattice sizes and couplings that are in agreement with our conventional lattice computations. We conclude with an outlook on further development of dual methods and their application to problems of current interest.Comment: v1: 18 pages, 7 figures, v2: Many changes to appendix, minor changes throughout, references and figures added, v3: minor corrections, 22 page

    Approaching the Kosterlitz-Thouless transition for the classical XY model with tensor networks

    Get PDF
    We apply variational tensor-network methods for simulating the Kosterlitz-Thouless phase transition in the classical two-dimensional XY model. In particular, using uniform matrix product states (MPS) with non-Abelian O(2) symmetry, we compute the universal drop in the spin stiffness at the critical point. In the critical low-temperature regime, we focus on the MPS entanglement spectrum to characterize the Luttinger-liquid phase. In the high-temperature phase, we confirm the exponential divergence of the correlation length and estimate the critical temperature with high precision. Our MPS approach can be used to study generic two-dimensional phase transitions with continuous symmetries
    corecore